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EE421/521 
Image Processing 
Lecture 8 
CORNER DETECTION 
EDGE DETECTION 
LINE IDENTIFICATION 

¢ Today 
l Edge Detection 
l Segmentation 

¢ Next Tuesday 14:40-16:30 
l More topics on edge detection and 

segmentstion 
l Classroom will be announced later 

¢ Next Thursday 
l Midterm 2 2 
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Edge Detection Applications 

¢  Image alignment 
¢ Object tracking 
¢ Boundary identification 
¢ Region segmentation 

3 

4 

Corner 
Detection 
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Corners, Edges, Smooth Areas 

Corners 

“flat” region: 
no change in all 
directions 

“edge”:   
no change along 
the edge direction 

“corner”: 
significant change 
in all directions 
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Autocorrelation:  
Indicator of Corners 
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Autocorrelation Calculation 

Autocorrelation can be approximated by 
sum-squared-difference (SSD): 
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SSD Calculation 
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Use Sobel Operator for 
Gradient Computation 

Gaussian derivative of Gaussian 

-1 0 1 

-2 0 2 
-1 0 1 

1 2 1 
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-1 -2 -1 

Horizontal derivative Vertical derivative 
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Eigenvalues and Eigenvectors 
of the Auto-correlation Matrix 

+− ≤=≤ λλ AuuvuE T),(

where            and          are the two eigenvalues of      .  −λ+λ A

lower limit upper limit 

The eigenvector          corresponding to       
gives the direction of largest increase E,  
 
while the eigenvector         corresponding to     
gives the direction of smallest increase in E. 

+λ

−λ

+e

−e

λ+ for Edges, λ- for Corners 
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Corner Detection Algorithm 
•  Compute the gradient at each point in the image 
•  Create the A matrix for each point from the gradients in a window  
•  Compute the eigenvalues of each A 
•  Find points with large response (λ- > threshold) 
•  Choose those points as features where λ- is a local maximum 

The Harris Operator 

 

 
•  Called the “Harris Corner Detector” or “Harris Operator” 
•  Very similar to λ- but less expensive (no square root) 

2211

21122211

)(tr
)det(

aa
aaaa

A
Af

+
−

==
+

=
+−

+−

λλ
λλ

⎥
⎦

⎤
⎢
⎣

⎡
=

2221

1211

aa
aa

A



28/11/13 

8 

The Harris Operator 
 

Harris  
operator 

Harris Detector Example 
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Threshold (f > value) 
 
 

 
Find Local Maxima of f 
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Harris Features (in red) 
 
 

20 

Edge  
Detection 

Slides mostly from Oge Marques, Copyright © 2011 by John Wiley & Sons, Inc..  
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What	  is	  Edge	  Detec.on?	  

¢  There	  is	  compelling	  evidence	  that	  the	  very	  
early	  stages	  of	  the	  human	  visual	  system	  
(HVS)	  contain	  edge-‐sensitive	  cells	  	  

¢ Goal	  of	  edge	  detection	  algorithms	  is	  to	  <ind	  
the	  most	  relevant	  edges	  in	  an	  image.	  	  

¢  These	  edges	  could	  then	  be	  connected	  into	  
meaningful	  lines	  and	  boundaries,	  resulting	  
in	  a	  segmented	  	  image	  containing	  two	  or	  
more	  regions.	  	  

Basic	  Concepts	  
¢  Edge:	  a	  boundary	  between	  two	  image	  regions	  having	  
distinct	  characteristics	  according	  to	  some	  feature	  (e.g.,	  gray	  
level,	  color,	  or	  texture).	  	  

¢  In	  grayscale	  2D	  images:	  a	  sharp	  variation	  of	  the	  intensity	  
function	  across	  a	  portion	  of	  the	  image.	  	  
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Image	  Deriva.ves	  and	  Edges	  

¢  The	  magnitude	  of	  the	  .irst	  derivative	  can	  
be	  used	  to	  detect	  the	  presence	  of	  an	  edge	  at	  
a	  certain	  point	  in	  the	  image.	  	  

¢  The	  sign	  of	  second	  derivative	  can	  be	  used	  
to	  determine	  whether	  a	  pixel	  lies	  on	  the	  
dark	  or	  bright	  side	  of	  an	  edge.	  	  
l Moreover,	  the	  zero	  crossing	  between	  the	  
positive	  and	  negative	  peaks	  of	  the	  second	  
derivative	  can	  be	  used	  to	  locate	  the	  center	  
of	  thick	  edges.	  

Ramp	  Edge	  

¢  The	  .irst	  	  derivative	  has	  a	  
peak	  at	  the	  	  center	  of	  the	  
luminance	  edge.	  	  

¢  The	  second	  derivative	  
has	  two	  peaks,	  with	  a	  
positive	  value	  on	  the	  left	  
and	  	  a	  negative	  value	  on	  
the	  right.	  
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The	  Influence	  of	  Noise	  
	  

(a),(b),(c)	  	  
Original	  image,	  
<irst	  derivative,	  
second	  derivative	  	  
(d),	  (e),	  (f)	  
Horizontal	  
pro<iles	  	  
	  
(g),	  (h),	  (i)	  
Noisy	  versions	  of	  
images	  	  
(j),	  (k),	  	  (l)	  
Horizontal	  
pro<iles	  

	  

FIRST-ORDER DERIVATIVE EDGE DETECTION 311

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 14.3 First and second order edge detectors with and without noise: (a) original image;
(b) first derivative; (c) second derivative; (d)-(f): horizontal profiles for images (a)-(c); (g)-(i) noisy
versions of images (a)-(c); (j)-(l): horizontal profiles for images (g)-(i).

These gradients are often computed within a 3⇥3 neighborhood using convolution:

gx(x, y) = hx ⇤ f(x, y) (14.5)

gy(x, y) = hy ⇤ f(x, y) (14.6)

where hx and hy are appropriate convolutions masks (kernels).
The simplest pair of kernels, known as the Prewitt [Pre70] edge detector (operator), are:

hx =

2

4

�1 0 1

�1 0 1

�1 0 1

3

5 (14.7)

hy =

2

4

�1 �1 �1

0 0 0

1 1 1

3

5 (14.8)

A similar pair of kernels, which gives more emphasis to on-axis pixels, is the Sobel edge
detector, given by:

Even modest levels of noise can make the second order derivative useless.  

2D Edge Detection Filters 

Laplacian operator: 

Laplacian of Gaussian 

Gaussian for Smoothing Derivative of Gaussian 

look for peaks look for zero-
crossings 
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Prewit and Sobel Edge 
Detectors 
¢  Compute derivatives in x and y directions 
¢  Find gradient magnitude 
¢  Threshold gradient magnitude 

Sobel Edge Detector 
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Sobel Edge Detector 

Sobel Edge Detector 
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Effect of Smoothing (Noise 
Suppression) 

Effect	  of	  Threshold	  

¢  (a)	  threshold	  of	  zero,	  too	  
many	  spurious	  pixels	  

¢  (b)	  threshold	  of	  0.05	  	  
¢  (c)	  threshold	  of	  0.1	  
¢  (d)	  threshold	  of	  0.2	  	  

SECOND-ORDER DERIVATIVE EDGE DETECTION 315

Figure 14.7 Robinson compass masks.

(a) (b)

(c) (d)

Figure 14.8 Edge detection using Sobel operator and thresholding (the original image is the same
as Figure 14.5(a)): (a) Threshold of 0; (b) Threshold of 0.05; (c) Threshold of 0.1138 (the best value);
(d) Threshold of 0.2.

In MATLAB

Edge detection using the Laplacian operator can be implemented using the fspecial
function (to generate the Laplacian 3⇥3 convolution mask) and the zerocross option in
function edge as follows:

314 EDGE DETECTION

(a) (b)

(c) (d)

Figure 14.5 Edge detection using Sobel operator: (a) original image; (b) result of Sobel horizontal
kernel; (c) result of Sobel vertical kernel; (d) combination of (b) and (c).

Figure 14.6 Kirsch compass masks.

for being employed as an isotropic (i.e., omnidirectional) edge detector, it is rarely used in
isolation because of two limitations (commented earlier in this chapter):

• it generates “double edges”, i.e., positive and negative values for each edge;

• it is extremely sensitive to noise.
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Zero Crossings of the 
Second Order Derivative 

Laplacian Based Edge 
Detection 
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Laplacian of Gaussian 
¢  Laplacian	  is	  rarely	  used	  in	  isolation	  because	  it	  is	  
extremely	  sensitive	  to	  noise.	  

¢  Laplacian	  of	  Gaussian	  (LoG)	  works	  by	  smoothing	  the	  
image	  with	  a	  Gaussian	  low-‐pass	  <ilter,	  and	  then	  applying	  
a	  Laplacian	  to	  the	  result.	  	  

¢  Edge	  detection	  is	  achieved	  by	  LoG	  followed	  by	  zero-‐
crossing	  detection	  318 EDGE DETECTION

(a) (b)

(c) (d)

Figure 14.10 Laplacian of Gaussian (LoG): (a) 3D plot; (b) 2D intensity plot; (c) cross section of
(a).

2. The local gradient (intensity and direction) is computed for each point in the smoothed
image.

3. The edge points at the output of step 2 result in wide ridges. The algorithm thins
those ridges, leaving only the pixels at the top of each ridge, in a process known as
non-maximal suppression.

4. The ridge pixels are then thresholded using two thresholds, Tlow and Thigh: ridge
pixels with value greater than Thigh are considered strong edge pixels; ridge pixels
with values between Tlow and Thigh are said to be weak pixels. This process is
known as hysteresis thresholding.

5. The algorithm performs edge linking, aggregating weak pixels that are 8-connected2

to the strong pixels.

In MATLAB

The edge function includes the Canny edge detector, which can be invoked using the
following syntax:

2In some implementations, only the neighbors along a line normal to the gradient orientation at the edge pixel are
considered, not the entire 8-neighborhood.

Laplacian	  of	  Gaussian	  
¢  Second	  derivative	  of	  the	  Gaussian	  

function	  
¢  Gaussian	  part	  smooths	  the	  image:	  	  

l  Reduces	  noise	  
l  Reduces	  image	  structures	  at	  

scales	  much	  smaller	  than	  sigma.	  	  
l  Gaussian	  is	  smooth	  in	  both	  spatial	  

and	  frequency	  domains	  and	  does	  
not	  have	  ringing	  artifact.	  	  

¢  Laplacian	  part:	  
l  Isotropic	  operator	  (invariant	  to	  

rotation)	  
l  Corresponds	  to	  characteristics	  of	  

human	  visual	  system	  
l  Responds	  equally	  to	  changes	  in	  

intensity	  in	  any	  mask	  direction	  	  
l  No	  need	  to	  use	  multiple	  masks	  
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Laplacian	  of	  Gaussian	  

¢  Negative	  of	  the	  LoG	  
¢  Zeros	  de<ine	  a	  circle	  

centered	  at	  origin.	  	  
¢  Also	  called	  as	  the	  Mexican	  

Hat	  operator	  because	  of	  
its	  shape.	  	  

¢  Can	  be	  approximated	  by	  a	  
(5	  x	  5)	  mask	  
l  Not	  unique.	  	  
l  Capture	  the	  general	  

shape	  (positive	  central	  
term	  surrounded	  by	  
negative	  terms,	  and	  zeros	  
at	  the	  outer	  region)	  

l  Coef<icients	  must	  sum	  to	  
zero	  so	  that	  the	  response	  
is	  zero	  at	  constant	  
intensities.	  	  

l  Masks	  of	  arbitrary	  size	  
can	  be	  generated	  by	  
sampling	  the	  LOG	  
function.	  	   )2 radius of circle a (define  02 :zeros
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Laplacian Edge Detection Example 
 

(a) Original 
image 
 
(b) sigma=2 
 
(c) sigma=1 
 
(d) sigma=3 

THE CANNY EDGE DETECTOR 319

(a) (b)

(c) (d)

Figure 14.11 Edge detection using the LoG edge detector: (a) input image; (b) results using default
values; (c) result using � = 1; (d) result using � = 3. Edge results have been inverted for clarity.

J = edge(I, ’canny’, T, sigma);
where I, is the input image, T = [T_low T_high] is a 1⇥2 vector containing the two

thresholds explained in step 4 of the algorithm, sigma is the standard deviation of the
Gaussian smoothing filter, and J is the output image.

EXAMPLE 14.5

Figure 14.12 shows the results of applying the Canny detector to an image (Fig-
ure 14.5(a)), and the impact of varying � and the thresholds. Part (a) uses the syntax
BW = edge(J,’canny’);, which results in t = [0.0625 0.1563] and � = 1. In
part (b), we change the value of � (to 0.5) leaving everything else unchanged. In part
(c), we change the value of � (to 2) leaving everything else unchanged. Changing
� causes the resulting image to contain more (part(b)) or fewer (part(c)) edge points
(compared to part (a)), as expected. Finally, in part (d), we keep � in its default value
and change the thresholds to t = [0.01 0.1]. Since both Tlow and Thigh were
lowered, the resulting image contains more strong and weak pixels, resulting in a
larger number of edge pixels (compared to part (a)), as expected.
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39 

Canny Edge 
Detector 

Quality of an Edge 
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Canny Edge Detector 

Canny Edge Detector Steps 
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Canny Edge Detector First 
Two Steps 

Canny Edge Detector 
Derivative of Gaussian 
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Canny Edge Detector:  
Steps 1 & 2 

Canny Edge Detector: 
Step 3 
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Canny Edge Detector: 
Step 4 

Canny Edge Detector 
Non-maximum Supression 
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Canny Edge Detector 
Nonmaxima Supression 

¢  Canny does edge thinning by nonmaxima 
suppression: 
l  Classify gradient angle into one of 4 

sectors: 
•  0: -22.5 to 22.5, 180-22.5 to 180+22.5 
•  1: 22.5 to 67.5, 180+22.5 to 180+67.5 
•  2: 67.5 to 112.5, 180+67.5 to 180+112.5 
•  3: 112.5 to 157.5, 180+112.5 to 180+157.5 

l  Compare center with the 2 neighbors, 
set to 0 if not greater than both 

Sector 0 Sector 1 Sector 2 Sector 3 

Canny Edge Detector 
Nonmaxima Supression 
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Canny Edge Detector 
Hysteresis Thresholding 
l  Check that maximum value of gradient is 

sufficiently large 
−  Hysteresis Thresholding 

•  Use a “High” threshold to start edge curves and a 
“Low” threshold to continue them. 

Canny Edge Detector 
Hysteresis Thresholding 
¢ Double Thresholding 

edge 
starts 
after 
passing 
Thigh 

edge 
ends 
when 
gradient 
falls 
below 
Tlow 
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Hysteresis Thresholding 

Canny Edge Detector 
Hysteresis Thresholding 
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The	  Canny	  Edge	  Detector	  
1.  Compute	  smoothed	  gradient	  (intensity	  and	  

direction)	  for	  each	  point	  in	  the	  image.	  
2.  Thin	  edges,	  leaving	  only	  the	  pixels	  at	  the	  top	  of	  

each	  ridge	  (non-‐maximal	  suppression).	  	  
3.  Threshold	  ridge	  pixels	  using	  two	  thresholds,	  Tlow	  

and	  Thigh	  (hysteresis	  thresholding).	  
1.  Ridge	  pixels	  with	  value	  greater	  than	  Thigh	  	  are	  

considered	  strong	  edge	  pixels	  
2.  Ridge	  pixels	  with	  values	  between	  Tlow	  and	  Thigh	  

are	  said	  to	  be	  weak	  edge	  pixels	  
4.  Perform	  edge	  linking,	  aggregating	  weak	  pixels	  

that	  are	  8-‐connected	  to	  the	  strong	  pixels.	  
	  
In	  MATLAB:	  J = edge(I, 'canny', T, sigma);  
% T contains two thresholds 

Canny Edge Detector 

Noisy original Canny Sobel 
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57 

Line 
Identification 

Edge	  Iden.fica.on	  

¢  Due	  to	  many	  technical	  challenges	  (noise,	  
shadows,	  occlusion,	  etc,),	  most	  edge	  detection	  
algorithms	  will	  output	  an	  image	  containing	  
fragmented	  edges.	  	  

¢  Additional	  processing	  is	  needed	  to	  turn	  
fragmented	  edge	  segments	  into	  useful	  lines	  
and	  object	  boundaries.	  	  
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The	  Hough	  Transform	  

¢ A	  mathematical	  method	  designed	  to	  
<ind	  lines	  in	  images.	  	  

¢  It	  can	  be	  used	  for	  linking	  the	  results	  of	  
edge	  detection,	  turning	  potentially	  
sparse,	  broken,	  or	  isolated	  edges	  into	  
useful	  lines	  that	  correspond	  to	  the	  
actual	  edges	  in	  the	  image.	  

The	  Hough	  transform	  
¢  Let	  (x,y)	  be	  the	  coordinates	  of	  a	  point	  in	  a	  binary	  image	  (containing	  

thresholded	  edge	  detection	  results).	  
¢  The	  Hough	  transform	  stores	  in	  an	  accumulator	  array	  all	  pairs	  (a,b)	  that	  

satisfy	  the	  equation	  y	  =	  ax+	  b.	  The	  (a,b)	  array	  is	  called	  the	  transform	  array.	  	  
l  Example:,	  the	  point	  (x,y)	  =	  (1,3)	  in	  the	  input	  image	  will	  result	  in	  the	  equation	  	  

b	  =	  -‐a	  +	  3,	  which	  can	  be	  plotted	  as	  a	  line	  that	  represents	  all	  pairs	  (a,b)	  that	  
satisfy	  this	  equation.	  

EDGE LINKING AND BOUNDARY DETECTION 321

array is called the transform array. For example, the point (x, y) = (1, 3) in the input
image will result in the equation b = �a+3, which can be plotted as a line that represents
all pairs (a, b) that satisfy this equation (Figure 14.13).

Figure 14.13 The Hough transform maps a point into a line.

Since each point in the image will map to a line in the transform domain, repeating the
process for other points will result in many intersecting lines, one per point (Figure 14.14).
The meaning of two or more lines intersecting in the transform domain is that the points
to which they correspond are aligned in the image. The points with the greatest number of
intersections in the transform domain correspond to the longest lines in the image.

Figure 14.14 The Hough transform: intersections in the transform domain correspond to aligned
points in the image.

Describing lines using the equation y = ax + b (where a represents the gradient)
poses a problem, though, since vertical lines have infinite gradient. This limitation can
be circumvented by using the normal representation of a line, which consists of two
parameters: ⇢ (the perpendicular distance from the line to the origin), and ✓ (the angle
between the line’s perpendicular and the horizontal axis). In this new representation
(Figure 14.15), vertical lines will have ✓ = 0. It is common to allow ⇢ to have negative
values, therefore restricting ✓ to the range �90

� < ✓  90

�.
The relationship between ⇢, ✓, and the original coordinates (x, y) is:

⇢ = x cos ✓ + y sin ✓ (14.13)
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The	  Hough	  Transform	  
¢  Since	  each	  point	  in	  the	  image	  will	  map	  to	  a	  line	  in	  the	  transform	  domain,	  

repeating	  the	  process	  for	  other	  points	  will	  result	  in	  many	  intersecting	  
lines,	  one	  per	  point.	  	  

¢  The	  meaning	  of	  two	  or	  more	  lines	  intersecting	  in	  the	  transform	  domain	  
is	  that	  the	  points	  to	  which	  they	  correspond	  are	  aligned	  in	  the	  image.	  	  

¢  The	  points	  with	  the	  greatest	  number	  of	  intersections	  in	  the	  transform	  
domain	  correspond	  to	  the	  longest	  lines	  in	  the	  image.	  

EDGE LINKING AND BOUNDARY DETECTION 321

array is called the transform array. For example, the point (x, y) = (1, 3) in the input
image will result in the equation b = �a+3, which can be plotted as a line that represents
all pairs (a, b) that satisfy this equation (Figure 14.13).

Figure 14.13 The Hough transform maps a point into a line.

Since each point in the image will map to a line in the transform domain, repeating the
process for other points will result in many intersecting lines, one per point (Figure 14.14).
The meaning of two or more lines intersecting in the transform domain is that the points
to which they correspond are aligned in the image. The points with the greatest number of
intersections in the transform domain correspond to the longest lines in the image.

Figure 14.14 The Hough transform: intersections in the transform domain correspond to aligned
points in the image.

Describing lines using the equation y = ax + b (where a represents the gradient)
poses a problem, though, since vertical lines have infinite gradient. This limitation can
be circumvented by using the normal representation of a line, which consists of two
parameters: ⇢ (the perpendicular distance from the line to the origin), and ✓ (the angle
between the line’s perpendicular and the horizontal axis). In this new representation
(Figure 14.15), vertical lines will have ✓ = 0. It is common to allow ⇢ to have negative
values, therefore restricting ✓ to the range �90

� < ✓  90

�.
The relationship between ⇢, ✓, and the original coordinates (x, y) is:

⇢ = x cos ✓ + y sin ✓ (14.13)

a=0, b=1 

a=1, b=-1 

The	  Hough	  Transform	  

¢  Describing	  lines	  using	  the	  equation	  y	  =	  ax	  +	  b	  (where	  a	  
represents	  the	  gradient)	  poses	  a	  problem,	  though,	  since	  
vertical	  lines	  have	  in<inite	  gradient.	  	  

¢  This	  limitation	  can	  be	  circumvented	  by	  using	  the	  normal	  
representation	  of	  a	  line,	  which	  consists	  of	  two	  parameters:	  
ρ	  and	  θ.	  	  
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Figure 14.15 The Hough transform: a line and its parameters in the polar coordinate system.

Under the new set of coordinates, the Hough transform can be implemented as follows:

1. Create a 2D array corresponding to a discrete set of values for ⇢ and ✓. Each element
in this array is often referred to as an accumulator cell.

2. For each pixel (x, y) in the image and for each chosen value of ✓, compute x cos ✓+
y sin ✓ and write the result in the corresponding position – (⇢, ✓) – in the accumulator
array.

3. The highest values in the (⇢, ✓) array will correspond to the most relevant lines in the
image.

In MATLAB

The IPT contains a function for Hough transform calculations, hough, which takes a binary
image as an input parameter, and returns the corresponding Hough transform matrix and
the arrays of ⇢ and ✓ values over which the Hough transform was calculated. Optionally,
the resolution of the discretized 2D array for both ⇢ and ✓ can be specified as additional
parameters.

EXAMPLE 14.6

In this example we use the hough function to find the strongest lines in a binary
image obtained as a result of an edge detection operator (BW), using the following
steps:

[H,T,R] = hough(BW,’RhoResolution’,0.5,’ThetaResolution’,0.5);

Figure 14.16 shows the original image and the results of the Hough transform
calculations. You will notice that some of the highest peaks in the transform image
(approximately at ✓ = �60

� and ✓ = 60

�) correspond do the main diagonal lines in
the scissors shape.

In MATLAB

The IPT also includes two useful companion functions for exploring and plotting the results
of Hough Transform calculations: houghpeaks (which identifies the k most salient peaks
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array is called the transform array. For example, the point (x, y) = (1, 3) in the input
image will result in the equation b = �a+3, which can be plotted as a line that represents
all pairs (a, b) that satisfy this equation (Figure 14.13).

Figure 14.13 The Hough transform maps a point into a line.

Since each point in the image will map to a line in the transform domain, repeating the
process for other points will result in many intersecting lines, one per point (Figure 14.14).
The meaning of two or more lines intersecting in the transform domain is that the points
to which they correspond are aligned in the image. The points with the greatest number of
intersections in the transform domain correspond to the longest lines in the image.

Figure 14.14 The Hough transform: intersections in the transform domain correspond to aligned
points in the image.

Describing lines using the equation y = ax + b (where a represents the gradient)
poses a problem, though, since vertical lines have infinite gradient. This limitation can
be circumvented by using the normal representation of a line, which consists of two
parameters: ⇢ (the perpendicular distance from the line to the origin), and ✓ (the angle
between the line’s perpendicular and the horizontal axis). In this new representation
(Figure 14.15), vertical lines will have ✓ = 0. It is common to allow ⇢ to have negative
values, therefore restricting ✓ to the range �90

� < ✓  90

�.
The relationship between ⇢, ✓, and the original coordinates (x, y) is:

⇢ = x cos ✓ + y sin ✓ (14.13)
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Hough Transform 
Example 

Example:	  Hough	  Transform	  
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The	  Hough	  Transform	  Algorithm	  

1.  Create	  a	  2D	  array	  corresponding	  to	  a	  discrete	  set	  of	  
values	  for	  ρ	  and	  θ.	  Each	  element	  in	  this	  array	  is	  
referred	  to	  as	  an	  accumulator	  cell.	  	  
1.  Increments	  too	  big:	  May	  not	  distinguish	  different	  lines	  
2.  Increments	  oo	  small:	  Noise	  may	  cause	  lines	  to	  be	  missed	  

2.  For	  each	  pixel	  (x,y)	  in	  the	  image	  and	  for	  each	  chosen	  
value	  of	  θ,	  compute	  x	  cos	  θ	  +	  y	  sin	  θ	  and	  write	  the	  
result	  in	  the	  corresponding	  position	  (ρ,	  θ)	  in	  the	  
accumulator	  array.	  	  

3.  The	  highest	  values	  in	  the	  (ρ,	  θ)	  array	  will	  
correspond	  to	  the	  most	  relevant	  lines	  in	  the	  image.	  	  

Line FittingHough Transform  
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Noise vs. Increments 

•  ρ	  and	  θ	  increments	  too	  
big:	  May	  not	  distinguish	  
different	  lines	  

•  ρ	  and	  θ	  increments	  too	  
small:	  Noise	  may	  cause	  
lines	  to	  be	  missed	  

Project 1.8 
Edge Detection 
Due 08.12.2013 

68 
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Problem 1.8 

1.  Select an image with a dominant edge in it. Display it. 
2.  Obtain gradient magnitude of its luminance channel. Use 

Sobel operator for calculating the derivatives. Display the 
horizontal and vertical gradient images. 

3.  Apply a threshold to the gradient magnitude image to 
detect edge pixels. Display the gradient magnitude image 
and its thresholded version. Pick an appropriate threshold 
using trial and error. 

4.  Use Hough transform to identify the parameters of the 
dominant edge. Display the Hough transformed image. 

5.  Comment on the performance of the above algorithm on 
finding the dominant edge in the image. 

69 

Next Lecture 

IMAGE SEGMENTATION 


