
28/11/13

1

1

EE421/521
Image Processing
Lecture 8
CORNER DETECTION
EDGE DETECTION
LINE IDENTIFICATION

¢ Today
l Edge Detection
l Segmentation

¢ Next Tuesday 14:40-16:30
l More topics on edge detection and

segmentstion
l Classroom will be announced later

¢ Next Thursday
l Midterm 2 2

28/11/13

2

Edge Detection Applications

¢  Image alignment
¢ Object tracking
¢ Boundary identification
¢ Region segmentation

3

4

Corner
Detection

28/11/13

3

Corners, Edges, Smooth Areas

Corners

“flat” region:
no change in all
directions

“edge”:
no change along
the edge direction

“corner”:
significant change
in all directions

28/11/13

4

Autocorrelation:
Indicator of Corners

∑
∈

++=
Wyx

yxIvyuxIvuR
),(

),(),(),(

Autocorrelation Calculation

Autocorrelation can be approximated by
sum-squared-difference (SSD):

∑
∈

++=
Wyx

yxIvyuxIvuR
),(

),(),(),(

28/11/13

5

SSD Calculation

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

∑∑
∑∑

W
y

W
yx

W
yx

W
x

III

III
A 2

2

AuuvuE T=),(

Let

then

⎥
⎦

⎤
⎢
⎣

⎡
=
v
u

uand

Use Sobel Operator for
Gradient Computation

Gaussian derivative of Gaussian

-1 0 1

-2 0 2
-1 0 1

1 2 1

0 0 0
-1 -2 -1

Horizontal derivative Vertical derivative

28/11/13

6

Eigenvalues and Eigenvectors
of the Auto-correlation Matrix

+− ≤=≤ λλ AuuvuE T),(

where and are the two eigenvalues of . −λ+λ A

lower limit upper limit

The eigenvector corresponding to
gives the direction of largest increase E,

while the eigenvector corresponding to
gives the direction of smallest increase in E.

+λ

−λ

+e

−e

λ+ for Edges, λ- for Corners

28/11/13

7

Corner Detection Algorithm
•  Compute the gradient at each point in the image
•  Create the A matrix for each point from the gradients in a window
•  Compute the eigenvalues of each A
•  Find points with large response (λ- > threshold)
•  Choose those points as features where λ- is a local maximum

The Harris Operator

•  Called the “Harris Corner Detector” or “Harris Operator”
•  Very similar to λ- but less expensive (no square root)

2211

21122211

)(tr
)det(

aa
aaaa

A
Af

+
−

==
+

=
+−

+−

λλ
λλ

⎥
⎦

⎤
⎢
⎣

⎡
=

2221

1211

aa
aa

A

28/11/13

8

The Harris Operator

Harris
operator

Harris Detector Example

28/11/13

9

Threshold (f > value)

Find Local Maxima of f

28/11/13

10

Harris Features (in red)

20

Edge
Detection

Slides mostly from Oge Marques, Copyright © 2011 by John Wiley & Sons, Inc..

28/11/13

11

What	 is	 Edge	 Detec.on?	

¢  There	 is	 compelling	 evidence	 that	 the	 very	
early	 stages	 of	 the	 human	 visual	 system	
(HVS)	 contain	 edge-‐sensitive	 cells	 	

¢ Goal	 of	 edge	 detection	 algorithms	 is	 to	 <ind	
the	 most	 relevant	 edges	 in	 an	 image.	 	

¢  These	 edges	 could	 then	 be	 connected	 into	
meaningful	 lines	 and	 boundaries,	 resulting	
in	 a	 segmented	 	 image	 containing	 two	 or	
more	 regions.	 	

Basic	 Concepts	
¢  Edge:	 a	 boundary	 between	 two	 image	 regions	 having	
distinct	 characteristics	 according	 to	 some	 feature	 (e.g.,	 gray	
level,	 color,	 or	 texture).	 	

¢  In	 grayscale	 2D	 images:	 a	 sharp	 variation	 of	 the	 intensity	
function	 across	 a	 portion	 of	 the	 image.	 	

28/11/13

12

Image	 Deriva.ves	 and	 Edges	

¢  The	 magnitude	 of	 the	 .irst	 derivative	 can	
be	 used	 to	 detect	 the	 presence	 of	 an	 edge	 at	
a	 certain	 point	 in	 the	 image.	 	

¢  The	 sign	 of	 second	 derivative	 can	 be	 used	
to	 determine	 whether	 a	 pixel	 lies	 on	 the	
dark	 or	 bright	 side	 of	 an	 edge.	 	
l Moreover,	 the	 zero	 crossing	 between	 the	
positive	 and	 negative	 peaks	 of	 the	 second	
derivative	 can	 be	 used	 to	 locate	 the	 center	
of	 thick	 edges.	

Ramp	 Edge	

¢  The	 .irst	 	 derivative	 has	 a	
peak	 at	 the	 	 center	 of	 the	
luminance	 edge.	 	

¢  The	 second	 derivative	
has	 two	 peaks,	 with	 a	
positive	 value	 on	 the	 left	
and	 	 a	 negative	 value	 on	
the	 right.	

28/11/13

13

The	 Influence	 of	 Noise	
	

(a),(b),(c)	 	
Original	 image,	
<irst	 derivative,	
second	 derivative	 	
(d),	 (e),	 (f)	
Horizontal	
pro<iles	 	
	
(g),	 (h),	 (i)	
Noisy	 versions	 of	
images	 	
(j),	 (k),	 	 (l)	
Horizontal	
pro<iles	

	

FIRST-ORDER DERIVATIVE EDGE DETECTION 311

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 14.3 First and second order edge detectors with and without noise: (a) original image;
(b) first derivative; (c) second derivative; (d)-(f): horizontal profiles for images (a)-(c); (g)-(i) noisy
versions of images (a)-(c); (j)-(l): horizontal profiles for images (g)-(i).

These gradients are often computed within a 3⇥3 neighborhood using convolution:

gx(x, y) = hx ⇤ f(x, y) (14.5)

gy(x, y) = hy ⇤ f(x, y) (14.6)

where hx and hy are appropriate convolutions masks (kernels).
The simplest pair of kernels, known as the Prewitt [Pre70] edge detector (operator), are:

hx =

2

4

�1 0 1

�1 0 1

�1 0 1

3

5 (14.7)

hy =

2

4

�1 �1 �1

0 0 0

1 1 1

3

5 (14.8)

A similar pair of kernels, which gives more emphasis to on-axis pixels, is the Sobel edge
detector, given by:

Even modest levels of noise can make the second order derivative useless.

2D Edge Detection Filters

Laplacian operator:

Laplacian of Gaussian

Gaussian for Smoothing Derivative of Gaussian

look for peaks look for zero-
crossings

28/11/13

14

Prewit and Sobel Edge
Detectors
¢  Compute derivatives in x and y directions
¢  Find gradient magnitude
¢  Threshold gradient magnitude

Sobel Edge Detector

28/11/13

15

Sobel Edge Detector

Sobel Edge Detector

28/11/13

16

Effect of Smoothing (Noise
Suppression)

Effect	 of	 Threshold	

¢  (a)	 threshold	 of	 zero,	 too	
many	 spurious	 pixels	

¢  (b)	 threshold	 of	 0.05	 	
¢  (c)	 threshold	 of	 0.1	
¢  (d)	 threshold	 of	 0.2	 	

SECOND-ORDER DERIVATIVE EDGE DETECTION 315

Figure 14.7 Robinson compass masks.

(a) (b)

(c) (d)

Figure 14.8 Edge detection using Sobel operator and thresholding (the original image is the same
as Figure 14.5(a)): (a) Threshold of 0; (b) Threshold of 0.05; (c) Threshold of 0.1138 (the best value);
(d) Threshold of 0.2.

In MATLAB

Edge detection using the Laplacian operator can be implemented using the fspecial
function (to generate the Laplacian 3⇥3 convolution mask) and the zerocross option in
function edge as follows:

314 EDGE DETECTION

(a) (b)

(c) (d)

Figure 14.5 Edge detection using Sobel operator: (a) original image; (b) result of Sobel horizontal
kernel; (c) result of Sobel vertical kernel; (d) combination of (b) and (c).

Figure 14.6 Kirsch compass masks.

for being employed as an isotropic (i.e., omnidirectional) edge detector, it is rarely used in
isolation because of two limitations (commented earlier in this chapter):

• it generates “double edges”, i.e., positive and negative values for each edge;

• it is extremely sensitive to noise.

28/11/13

17

Zero Crossings of the
Second Order Derivative

Laplacian Based Edge
Detection

28/11/13

18

Laplacian of Gaussian
¢  Laplacian	 is	 rarely	 used	 in	 isolation	 because	 it	 is	
extremely	 sensitive	 to	 noise.	

¢  Laplacian	 of	 Gaussian	 (LoG)	 works	 by	 smoothing	 the	
image	 with	 a	 Gaussian	 low-‐pass	 <ilter,	 and	 then	 applying	
a	 Laplacian	 to	 the	 result.	 	

¢  Edge	 detection	 is	 achieved	 by	 LoG	 followed	 by	 zero-‐
crossing	 detection	 318 EDGE DETECTION

(a) (b)

(c) (d)

Figure 14.10 Laplacian of Gaussian (LoG): (a) 3D plot; (b) 2D intensity plot; (c) cross section of
(a).

2. The local gradient (intensity and direction) is computed for each point in the smoothed
image.

3. The edge points at the output of step 2 result in wide ridges. The algorithm thins
those ridges, leaving only the pixels at the top of each ridge, in a process known as
non-maximal suppression.

4. The ridge pixels are then thresholded using two thresholds, Tlow and Thigh: ridge
pixels with value greater than Thigh are considered strong edge pixels; ridge pixels
with values between Tlow and Thigh are said to be weak pixels. This process is
known as hysteresis thresholding.

5. The algorithm performs edge linking, aggregating weak pixels that are 8-connected2

to the strong pixels.

In MATLAB

The edge function includes the Canny edge detector, which can be invoked using the
following syntax:

2In some implementations, only the neighbors along a line normal to the gradient orientation at the edge pixel are
considered, not the entire 8-neighborhood.

Laplacian	 of	 Gaussian	
¢  Second	 derivative	 of	 the	 Gaussian	

function	
¢  Gaussian	 part	 smooths	 the	 image:	 	

l  Reduces	 noise	
l  Reduces	 image	 structures	 at	

scales	 much	 smaller	 than	 sigma.	 	
l  Gaussian	 is	 smooth	 in	 both	 spatial	

and	 frequency	 domains	 and	 does	
not	 have	 ringing	 artifact.	 	

¢  Laplacian	 part:	
l  Isotropic	 operator	 (invariant	 to	

rotation)	
l  Corresponds	 to	 characteristics	 of	

human	 visual	 system	
l  Responds	 equally	 to	 changes	 in	

intensity	 in	 any	 mask	 direction	 	
l  No	 need	 to	 use	 multiple	 masks	

G2∇

e

ee

ee

e

yx

yxyx

yxyx

yx

yxyxG

yx

y
y

x
x

y
yxG

x
yxGyxG

yxG

2

22

2

22

2

22

2

22

2

22

2

22

2
4

222
2

2
24

2
2

24

2

2
2

2
2

2

2

2

2
2

2

2),(

11

),(),(),(

),(

σ

σσ

σσ

σ

σ
σ

σσσσ

σσ

+
−

+
−

+
−

+
−

+
−

+
−

⎥
⎦

⎤
⎢
⎣

⎡ −+
=∇

⎥
⎦

⎤
⎢
⎣

⎡
−+⎥

⎦

⎤
⎢
⎣

⎡
−=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −

∂

∂
+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −

∂

∂
=

∂

∂
+

∂

∂
=∇

=

Gaussian Laplacian LoG
is equivalent to

28/11/13

19

Laplacian	 of	 Gaussian	

¢  Negative	 of	 the	 LoG	
¢  Zeros	 de<ine	 a	 circle	

centered	 at	 origin.	 	
¢  Also	 called	 as	 the	 Mexican	

Hat	 operator	 because	 of	
its	 shape.	 	

¢  Can	 be	 approximated	 by	 a	
(5	 x	 5)	 mask	
l  Not	 unique.	 	
l  Capture	 the	 general	

shape	 (positive	 central	
term	 surrounded	 by	
negative	 terms,	 and	 zeros	
at	 the	 outer	 region)	

l  Coef<icients	 must	 sum	 to	
zero	 so	 that	 the	 response	
is	 zero	 at	 constant	
intensities.	 	

l  Masks	 of	 arbitrary	 size	
can	 be	 generated	 by	
sampling	 the	 LOG	
function.)2 radius of circle a (define 02 :zeros

2),(

222

2
4

222
2 2

22

σσ

σ
σ

σ

=−+

⎥
⎦

⎤
⎢
⎣

⎡ −+
=∇

+
−

yx

yxyxG e
yx

Laplacian Edge Detection Example

(a) Original
image

(b) sigma=2

(c) sigma=1

(d) sigma=3

THE CANNY EDGE DETECTOR 319

(a) (b)

(c) (d)

Figure 14.11 Edge detection using the LoG edge detector: (a) input image; (b) results using default
values; (c) result using � = 1; (d) result using � = 3. Edge results have been inverted for clarity.

J = edge(I, ’canny’, T, sigma);
where I, is the input image, T = [T_low T_high] is a 1⇥2 vector containing the two

thresholds explained in step 4 of the algorithm, sigma is the standard deviation of the
Gaussian smoothing filter, and J is the output image.

EXAMPLE 14.5

Figure 14.12 shows the results of applying the Canny detector to an image (Fig-
ure 14.5(a)), and the impact of varying � and the thresholds. Part (a) uses the syntax
BW = edge(J,’canny’);, which results in t = [0.0625 0.1563] and � = 1. In
part (b), we change the value of � (to 0.5) leaving everything else unchanged. In part
(c), we change the value of � (to 2) leaving everything else unchanged. Changing
� causes the resulting image to contain more (part(b)) or fewer (part(c)) edge points
(compared to part (a)), as expected. Finally, in part (d), we keep � in its default value
and change the thresholds to t = [0.01 0.1]. Since both Tlow and Thigh were
lowered, the resulting image contains more strong and weak pixels, resulting in a
larger number of edge pixels (compared to part (a)), as expected.

28/11/13

20

39

Canny Edge
Detector

Quality of an Edge

28/11/13

21

Canny Edge Detector

Canny Edge Detector Steps

28/11/13

22

Canny Edge Detector First
Two Steps

Canny Edge Detector
Derivative of Gaussian

28/11/13

23

Canny Edge Detector:
Steps 1 & 2

Canny Edge Detector:
Step 3

28/11/13

24

Canny Edge Detector:
Step 4

Canny Edge Detector
Non-maximum Supression

28/11/13

25

Canny Edge Detector
Nonmaxima Supression

¢  Canny does edge thinning by nonmaxima
suppression:
l  Classify gradient angle into one of 4

sectors:
•  0: -22.5 to 22.5, 180-22.5 to 180+22.5
•  1: 22.5 to 67.5, 180+22.5 to 180+67.5
•  2: 67.5 to 112.5, 180+67.5 to 180+112.5
•  3: 112.5 to 157.5, 180+112.5 to 180+157.5

l  Compare center with the 2 neighbors,
set to 0 if not greater than both

Sector 0 Sector 1 Sector 2 Sector 3

Canny Edge Detector
Nonmaxima Supression

28/11/13

26

Canny Edge Detector
Hysteresis Thresholding
l  Check that maximum value of gradient is

sufficiently large
−  Hysteresis Thresholding

•  Use a “High” threshold to start edge curves and a
“Low” threshold to continue them.

Canny Edge Detector
Hysteresis Thresholding
¢ Double Thresholding

edge
starts
after
passing
Thigh

edge
ends
when
gradient
falls
below
Tlow

28/11/13

27

Hysteresis Thresholding

Canny Edge Detector
Hysteresis Thresholding

28/11/13

28

The	 Canny	 Edge	 Detector	
1.  Compute	 smoothed	 gradient	 (intensity	 and	

direction)	 for	 each	 point	 in	 the	 image.	
2.  Thin	 edges,	 leaving	 only	 the	 pixels	 at	 the	 top	 of	

each	 ridge	 (non-‐maximal	 suppression).	 	
3.  Threshold	 ridge	 pixels	 using	 two	 thresholds,	 Tlow	

and	 Thigh	 (hysteresis	 thresholding).	
1.  Ridge	 pixels	 with	 value	 greater	 than	 Thigh	 	 are	

considered	 strong	 edge	 pixels	
2.  Ridge	 pixels	 with	 values	 between	 Tlow	 and	 Thigh	

are	 said	 to	 be	 weak	 edge	 pixels	
4.  Perform	 edge	 linking,	 aggregating	 weak	 pixels	

that	 are	 8-‐connected	 to	 the	 strong	 pixels.	
	
In	 MATLAB:	 J = edge(I, 'canny', T, sigma);
% T contains two thresholds

Canny Edge Detector

Noisy original Canny Sobel

28/11/13

29

57

Line
Identification

Edge	 Iden.fica.on	

¢  Due	 to	 many	 technical	 challenges	 (noise,	
shadows,	 occlusion,	 etc,),	 most	 edge	 detection	
algorithms	 will	 output	 an	 image	 containing	
fragmented	 edges.	 	

¢  Additional	 processing	 is	 needed	 to	 turn	
fragmented	 edge	 segments	 into	 useful	 lines	
and	 object	 boundaries.	 	

28/11/13

30

The	 Hough	 Transform	

¢ A	 mathematical	 method	 designed	 to	
<ind	 lines	 in	 images.	 	

¢  It	 can	 be	 used	 for	 linking	 the	 results	 of	
edge	 detection,	 turning	 potentially	
sparse,	 broken,	 or	 isolated	 edges	 into	
useful	 lines	 that	 correspond	 to	 the	
actual	 edges	 in	 the	 image.	

The	 Hough	 transform	
¢  Let	 (x,y)	 be	 the	 coordinates	 of	 a	 point	 in	 a	 binary	 image	 (containing	

thresholded	 edge	 detection	 results).	
¢  The	 Hough	 transform	 stores	 in	 an	 accumulator	 array	 all	 pairs	 (a,b)	 that	

satisfy	 the	 equation	 y	 =	 ax+	 b.	 The	 (a,b)	 array	 is	 called	 the	 transform	 array.	 	
l  Example:,	 the	 point	 (x,y)	 =	 (1,3)	 in	 the	 input	 image	 will	 result	 in	 the	 equation	 	

b	 =	 -‐a	 +	 3,	 which	 can	 be	 plotted	 as	 a	 line	 that	 represents	 all	 pairs	 (a,b)	 that	
satisfy	 this	 equation.	

EDGE LINKING AND BOUNDARY DETECTION 321

array is called the transform array. For example, the point (x, y) = (1, 3) in the input
image will result in the equation b = �a+3, which can be plotted as a line that represents
all pairs (a, b) that satisfy this equation (Figure 14.13).

Figure 14.13 The Hough transform maps a point into a line.

Since each point in the image will map to a line in the transform domain, repeating the
process for other points will result in many intersecting lines, one per point (Figure 14.14).
The meaning of two or more lines intersecting in the transform domain is that the points
to which they correspond are aligned in the image. The points with the greatest number of
intersections in the transform domain correspond to the longest lines in the image.

Figure 14.14 The Hough transform: intersections in the transform domain correspond to aligned
points in the image.

Describing lines using the equation y = ax + b (where a represents the gradient)
poses a problem, though, since vertical lines have infinite gradient. This limitation can
be circumvented by using the normal representation of a line, which consists of two
parameters: ⇢ (the perpendicular distance from the line to the origin), and ✓ (the angle
between the line’s perpendicular and the horizontal axis). In this new representation
(Figure 14.15), vertical lines will have ✓ = 0. It is common to allow ⇢ to have negative
values, therefore restricting ✓ to the range �90

� < ✓ 90

�.
The relationship between ⇢, ✓, and the original coordinates (x, y) is:

⇢ = x cos ✓ + y sin ✓ (14.13)

28/11/13

31

The	 Hough	 Transform	
¢  Since	 each	 point	 in	 the	 image	 will	 map	 to	 a	 line	 in	 the	 transform	 domain,	

repeating	 the	 process	 for	 other	 points	 will	 result	 in	 many	 intersecting	
lines,	 one	 per	 point.	 	

¢  The	 meaning	 of	 two	 or	 more	 lines	 intersecting	 in	 the	 transform	 domain	
is	 that	 the	 points	 to	 which	 they	 correspond	 are	 aligned	 in	 the	 image.	 	

¢  The	 points	 with	 the	 greatest	 number	 of	 intersections	 in	 the	 transform	
domain	 correspond	 to	 the	 longest	 lines	 in	 the	 image.	

EDGE LINKING AND BOUNDARY DETECTION 321

array is called the transform array. For example, the point (x, y) = (1, 3) in the input
image will result in the equation b = �a+3, which can be plotted as a line that represents
all pairs (a, b) that satisfy this equation (Figure 14.13).

Figure 14.13 The Hough transform maps a point into a line.

Since each point in the image will map to a line in the transform domain, repeating the
process for other points will result in many intersecting lines, one per point (Figure 14.14).
The meaning of two or more lines intersecting in the transform domain is that the points
to which they correspond are aligned in the image. The points with the greatest number of
intersections in the transform domain correspond to the longest lines in the image.

Figure 14.14 The Hough transform: intersections in the transform domain correspond to aligned
points in the image.

Describing lines using the equation y = ax + b (where a represents the gradient)
poses a problem, though, since vertical lines have infinite gradient. This limitation can
be circumvented by using the normal representation of a line, which consists of two
parameters: ⇢ (the perpendicular distance from the line to the origin), and ✓ (the angle
between the line’s perpendicular and the horizontal axis). In this new representation
(Figure 14.15), vertical lines will have ✓ = 0. It is common to allow ⇢ to have negative
values, therefore restricting ✓ to the range �90

� < ✓ 90

�.
The relationship between ⇢, ✓, and the original coordinates (x, y) is:

⇢ = x cos ✓ + y sin ✓ (14.13)

a=0, b=1

a=1, b=-1

The	 Hough	 Transform	

¢  Describing	 lines	 using	 the	 equation	 y	 =	 ax	 +	 b	 (where	 a	
represents	 the	 gradient)	 poses	 a	 problem,	 though,	 since	
vertical	 lines	 have	 in<inite	 gradient.	 	

¢  This	 limitation	 can	 be	 circumvented	 by	 using	 the	 normal	
representation	 of	 a	 line,	 which	 consists	 of	 two	 parameters:	
ρ	 and	 θ.	 	
322 EDGE DETECTION

Figure 14.15 The Hough transform: a line and its parameters in the polar coordinate system.

Under the new set of coordinates, the Hough transform can be implemented as follows:

1. Create a 2D array corresponding to a discrete set of values for ⇢ and ✓. Each element
in this array is often referred to as an accumulator cell.

2. For each pixel (x, y) in the image and for each chosen value of ✓, compute x cos ✓+
y sin ✓ and write the result in the corresponding position – (⇢, ✓) – in the accumulator
array.

3. The highest values in the (⇢, ✓) array will correspond to the most relevant lines in the
image.

In MATLAB

The IPT contains a function for Hough transform calculations, hough, which takes a binary
image as an input parameter, and returns the corresponding Hough transform matrix and
the arrays of ⇢ and ✓ values over which the Hough transform was calculated. Optionally,
the resolution of the discretized 2D array for both ⇢ and ✓ can be specified as additional
parameters.

EXAMPLE 14.6

In this example we use the hough function to find the strongest lines in a binary
image obtained as a result of an edge detection operator (BW), using the following
steps:

[H,T,R] = hough(BW,’RhoResolution’,0.5,’ThetaResolution’,0.5);

Figure 14.16 shows the original image and the results of the Hough transform
calculations. You will notice that some of the highest peaks in the transform image
(approximately at ✓ = �60

� and ✓ = 60

�) correspond do the main diagonal lines in
the scissors shape.

In MATLAB

The IPT also includes two useful companion functions for exploring and plotting the results
of Hough Transform calculations: houghpeaks (which identifies the k most salient peaks

EDGE LINKING AND BOUNDARY DETECTION 321

array is called the transform array. For example, the point (x, y) = (1, 3) in the input
image will result in the equation b = �a+3, which can be plotted as a line that represents
all pairs (a, b) that satisfy this equation (Figure 14.13).

Figure 14.13 The Hough transform maps a point into a line.

Since each point in the image will map to a line in the transform domain, repeating the
process for other points will result in many intersecting lines, one per point (Figure 14.14).
The meaning of two or more lines intersecting in the transform domain is that the points
to which they correspond are aligned in the image. The points with the greatest number of
intersections in the transform domain correspond to the longest lines in the image.

Figure 14.14 The Hough transform: intersections in the transform domain correspond to aligned
points in the image.

Describing lines using the equation y = ax + b (where a represents the gradient)
poses a problem, though, since vertical lines have infinite gradient. This limitation can
be circumvented by using the normal representation of a line, which consists of two
parameters: ⇢ (the perpendicular distance from the line to the origin), and ✓ (the angle
between the line’s perpendicular and the horizontal axis). In this new representation
(Figure 14.15), vertical lines will have ✓ = 0. It is common to allow ⇢ to have negative
values, therefore restricting ✓ to the range �90

� < ✓ 90

�.
The relationship between ⇢, ✓, and the original coordinates (x, y) is:

⇢ = x cos ✓ + y sin ✓ (14.13)

28/11/13

32

Hough Transform
Example

Example:	 Hough	 Transform	

B

A

C

D

C
D

A B

28/11/13

33

The	 Hough	 Transform	 Algorithm	

1.  Create	 a	 2D	 array	 corresponding	 to	 a	 discrete	 set	 of	
values	 for	 ρ	 and	 θ.	 Each	 element	 in	 this	 array	 is	
referred	 to	 as	 an	 accumulator	 cell.	 	
1.  Increments	 too	 big:	 May	 not	 distinguish	 different	 lines	
2.  Increments	 oo	 small:	 Noise	 may	 cause	 lines	 to	 be	 missed	

2.  For	 each	 pixel	 (x,y)	 in	 the	 image	 and	 for	 each	 chosen	
value	 of	 θ,	 compute	 x	 cos	 θ	 +	 y	 sin	 θ	 and	 write	 the	
result	 in	 the	 corresponding	 position	 (ρ,	 θ)	 in	 the	
accumulator	 array.	 	

3.  The	 highest	 values	 in	 the	 (ρ,	 θ)	 array	 will	
correspond	 to	 the	 most	 relevant	 lines	 in	 the	 image.	 	

Line FittingHough Transform

28/11/13

34

Noise vs. Increments

•  ρ	 and	 θ	 increments	 too	
big:	 May	 not	 distinguish	
different	 lines	

•  ρ	 and	 θ	 increments	 too	
small:	 Noise	 may	 cause	
lines	 to	 be	 missed	

Project 1.8
Edge Detection
Due 08.12.2013

68

28/11/13

35

Problem 1.8

1.  Select an image with a dominant edge in it. Display it.
2.  Obtain gradient magnitude of its luminance channel. Use

Sobel operator for calculating the derivatives. Display the
horizontal and vertical gradient images.

3.  Apply a threshold to the gradient magnitude image to
detect edge pixels. Display the gradient magnitude image
and its thresholded version. Pick an appropriate threshold
using trial and error.

4.  Use Hough transform to identify the parameters of the
dominant edge. Display the Hough transformed image.

5.  Comment on the performance of the above algorithm on
finding the dominant edge in the image.

69

Next Lecture

IMAGE SEGMENTATION

