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EE421/521 
Image Processing 
Lecture 8 
CORNER DETECTION 
EDGE DETECTION 
LINE IDENTIFICATION 

¢ Today 
l Edge Detection 
l Segmentation 

¢ Next Tuesday 14:40-16:30 
l More topics on edge detection and 

segmentstion 
l Classroom will be announced later 

¢ Next Thursday 
l Midterm 2 2 
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Edge Detection Applications 

¢  Image alignment 
¢ Object tracking 
¢ Boundary identification 
¢ Region segmentation 

3 

4 

Corner 
Detection 
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Corners, Edges, Smooth Areas 

Corners 

“flat” region: 
no change in all 
directions 

“edge”:   
no change along 
the edge direction 

“corner”: 
significant change 
in all directions 
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Autocorrelation:  
Indicator of Corners 
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Autocorrelation Calculation 

Autocorrelation can be approximated by 
sum-squared-difference (SSD): 
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SSD Calculation 
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Use Sobel Operator for 
Gradient Computation 

Gaussian derivative of Gaussian 

-1 0 1 

-2 0 2 
-1 0 1 

1 2 1 

0 0 0 
-1 -2 -1 

Horizontal derivative Vertical derivative 
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Eigenvalues and Eigenvectors 
of the Auto-correlation Matrix 

+− ≤=≤ λλ AuuvuE T),(

where            and          are the two eigenvalues of      .  −λ+λ A

lower limit upper limit 

The eigenvector          corresponding to       
gives the direction of largest increase E,  
 
while the eigenvector         corresponding to     
gives the direction of smallest increase in E. 

+λ

−λ

+e

−e

λ+ for Edges, λ- for Corners 
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Corner Detection Algorithm 
•  Compute the gradient at each point in the image 
•  Create the A matrix for each point from the gradients in a window  
•  Compute the eigenvalues of each A 
•  Find points with large response (λ- > threshold) 
•  Choose those points as features where λ- is a local maximum 

The Harris Operator 

 

 
•  Called the “Harris Corner Detector” or “Harris Operator” 
•  Very similar to λ- but less expensive (no square root) 
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The Harris Operator 
 

Harris  
operator 

Harris Detector Example 
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Threshold (f > value) 
 
 

 
Find Local Maxima of f 
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Harris Features (in red) 
 
 

20 

Edge  
Detection 

Slides mostly from Oge Marques, Copyright © 2011 by John Wiley & Sons, Inc..  
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What	
  is	
  Edge	
  Detec.on?	
  

¢  There	
  is	
  compelling	
  evidence	
  that	
  the	
  very	
  
early	
  stages	
  of	
  the	
  human	
  visual	
  system	
  
(HVS)	
  contain	
  edge-­‐sensitive	
  cells	
  	
  

¢ Goal	
  of	
  edge	
  detection	
  algorithms	
  is	
  to	
  <ind	
  
the	
  most	
  relevant	
  edges	
  in	
  an	
  image.	
  	
  

¢  These	
  edges	
  could	
  then	
  be	
  connected	
  into	
  
meaningful	
  lines	
  and	
  boundaries,	
  resulting	
  
in	
  a	
  segmented	
  	
  image	
  containing	
  two	
  or	
  
more	
  regions.	
  	
  

Basic	
  Concepts	
  
¢  Edge:	
  a	
  boundary	
  between	
  two	
  image	
  regions	
  having	
  
distinct	
  characteristics	
  according	
  to	
  some	
  feature	
  (e.g.,	
  gray	
  
level,	
  color,	
  or	
  texture).	
  	
  

¢  In	
  grayscale	
  2D	
  images:	
  a	
  sharp	
  variation	
  of	
  the	
  intensity	
  
function	
  across	
  a	
  portion	
  of	
  the	
  image.	
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Image	
  Deriva.ves	
  and	
  Edges	
  

¢  The	
  magnitude	
  of	
  the	
  .irst	
  derivative	
  can	
  
be	
  used	
  to	
  detect	
  the	
  presence	
  of	
  an	
  edge	
  at	
  
a	
  certain	
  point	
  in	
  the	
  image.	
  	
  

¢  The	
  sign	
  of	
  second	
  derivative	
  can	
  be	
  used	
  
to	
  determine	
  whether	
  a	
  pixel	
  lies	
  on	
  the	
  
dark	
  or	
  bright	
  side	
  of	
  an	
  edge.	
  	
  
l Moreover,	
  the	
  zero	
  crossing	
  between	
  the	
  
positive	
  and	
  negative	
  peaks	
  of	
  the	
  second	
  
derivative	
  can	
  be	
  used	
  to	
  locate	
  the	
  center	
  
of	
  thick	
  edges.	
  

Ramp	
  Edge	
  

¢  The	
  .irst	
  	
  derivative	
  has	
  a	
  
peak	
  at	
  the	
  	
  center	
  of	
  the	
  
luminance	
  edge.	
  	
  

¢  The	
  second	
  derivative	
  
has	
  two	
  peaks,	
  with	
  a	
  
positive	
  value	
  on	
  the	
  left	
  
and	
  	
  a	
  negative	
  value	
  on	
  
the	
  right.	
  



28/11/13 

13 

The	
  Influence	
  of	
  Noise	
  
	
  

(a),(b),(c)	
  	
  
Original	
  image,	
  
<irst	
  derivative,	
  
second	
  derivative	
  	
  
(d),	
  (e),	
  (f)	
  
Horizontal	
  
pro<iles	
  	
  
	
  
(g),	
  (h),	
  (i)	
  
Noisy	
  versions	
  of	
  
images	
  	
  
(j),	
  (k),	
  	
  (l)	
  
Horizontal	
  
pro<iles	
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 14.3 First and second order edge detectors with and without noise: (a) original image;
(b) first derivative; (c) second derivative; (d)-(f): horizontal profiles for images (a)-(c); (g)-(i) noisy
versions of images (a)-(c); (j)-(l): horizontal profiles for images (g)-(i).

These gradients are often computed within a 3⇥3 neighborhood using convolution:

gx(x, y) = hx ⇤ f(x, y) (14.5)

gy(x, y) = hy ⇤ f(x, y) (14.6)

where hx and hy are appropriate convolutions masks (kernels).
The simplest pair of kernels, known as the Prewitt [Pre70] edge detector (operator), are:

hx =

2

4

�1 0 1

�1 0 1

�1 0 1

3

5 (14.7)

hy =

2

4

�1 �1 �1

0 0 0

1 1 1

3

5 (14.8)

A similar pair of kernels, which gives more emphasis to on-axis pixels, is the Sobel edge
detector, given by:

Even modest levels of noise can make the second order derivative useless.  

2D Edge Detection Filters 

Laplacian operator: 

Laplacian of Gaussian 

Gaussian for Smoothing Derivative of Gaussian 

look for peaks look for zero-
crossings 



28/11/13 

14 

Prewit and Sobel Edge 
Detectors 
¢  Compute derivatives in x and y directions 
¢  Find gradient magnitude 
¢  Threshold gradient magnitude 

Sobel Edge Detector 
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Sobel Edge Detector 

Sobel Edge Detector 
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Effect of Smoothing (Noise 
Suppression) 

Effect	
  of	
  Threshold	
  

¢  (a)	
  threshold	
  of	
  zero,	
  too	
  
many	
  spurious	
  pixels	
  

¢  (b)	
  threshold	
  of	
  0.05	
  	
  
¢  (c)	
  threshold	
  of	
  0.1	
  
¢  (d)	
  threshold	
  of	
  0.2	
  	
  

SECOND-ORDER DERIVATIVE EDGE DETECTION 315

Figure 14.7 Robinson compass masks.

(a) (b)

(c) (d)

Figure 14.8 Edge detection using Sobel operator and thresholding (the original image is the same
as Figure 14.5(a)): (a) Threshold of 0; (b) Threshold of 0.05; (c) Threshold of 0.1138 (the best value);
(d) Threshold of 0.2.

In MATLAB

Edge detection using the Laplacian operator can be implemented using the fspecial
function (to generate the Laplacian 3⇥3 convolution mask) and the zerocross option in
function edge as follows:

314 EDGE DETECTION

(a) (b)

(c) (d)

Figure 14.5 Edge detection using Sobel operator: (a) original image; (b) result of Sobel horizontal
kernel; (c) result of Sobel vertical kernel; (d) combination of (b) and (c).

Figure 14.6 Kirsch compass masks.

for being employed as an isotropic (i.e., omnidirectional) edge detector, it is rarely used in
isolation because of two limitations (commented earlier in this chapter):

• it generates “double edges”, i.e., positive and negative values for each edge;

• it is extremely sensitive to noise.
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Zero Crossings of the 
Second Order Derivative 

Laplacian Based Edge 
Detection 
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Laplacian of Gaussian 
¢  Laplacian	
  is	
  rarely	
  used	
  in	
  isolation	
  because	
  it	
  is	
  
extremely	
  sensitive	
  to	
  noise.	
  

¢  Laplacian	
  of	
  Gaussian	
  (LoG)	
  works	
  by	
  smoothing	
  the	
  
image	
  with	
  a	
  Gaussian	
  low-­‐pass	
  <ilter,	
  and	
  then	
  applying	
  
a	
  Laplacian	
  to	
  the	
  result.	
  	
  

¢  Edge	
  detection	
  is	
  achieved	
  by	
  LoG	
  followed	
  by	
  zero-­‐
crossing	
  detection	
  318 EDGE DETECTION

(a) (b)

(c) (d)

Figure 14.10 Laplacian of Gaussian (LoG): (a) 3D plot; (b) 2D intensity plot; (c) cross section of
(a).

2. The local gradient (intensity and direction) is computed for each point in the smoothed
image.

3. The edge points at the output of step 2 result in wide ridges. The algorithm thins
those ridges, leaving only the pixels at the top of each ridge, in a process known as
non-maximal suppression.

4. The ridge pixels are then thresholded using two thresholds, Tlow and Thigh: ridge
pixels with value greater than Thigh are considered strong edge pixels; ridge pixels
with values between Tlow and Thigh are said to be weak pixels. This process is
known as hysteresis thresholding.

5. The algorithm performs edge linking, aggregating weak pixels that are 8-connected2

to the strong pixels.

In MATLAB

The edge function includes the Canny edge detector, which can be invoked using the
following syntax:

2In some implementations, only the neighbors along a line normal to the gradient orientation at the edge pixel are
considered, not the entire 8-neighborhood.

Laplacian	
  of	
  Gaussian	
  
¢  Second	
  derivative	
  of	
  the	
  Gaussian	
  

function	
  
¢  Gaussian	
  part	
  smooths	
  the	
  image:	
  	
  

l  Reduces	
  noise	
  
l  Reduces	
  image	
  structures	
  at	
  

scales	
  much	
  smaller	
  than	
  sigma.	
  	
  
l  Gaussian	
  is	
  smooth	
  in	
  both	
  spatial	
  

and	
  frequency	
  domains	
  and	
  does	
  
not	
  have	
  ringing	
  artifact.	
  	
  

¢  Laplacian	
  part:	
  
l  Isotropic	
  operator	
  (invariant	
  to	
  

rotation)	
  
l  Corresponds	
  to	
  characteristics	
  of	
  

human	
  visual	
  system	
  
l  Responds	
  equally	
  to	
  changes	
  in	
  

intensity	
  in	
  any	
  mask	
  direction	
  	
  
l  No	
  need	
  to	
  use	
  multiple	
  masks	
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Gaussian Laplacian LoG 
is equivalent to 
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Laplacian	
  of	
  Gaussian	
  

¢  Negative	
  of	
  the	
  LoG	
  
¢  Zeros	
  de<ine	
  a	
  circle	
  

centered	
  at	
  origin.	
  	
  
¢  Also	
  called	
  as	
  the	
  Mexican	
  

Hat	
  operator	
  because	
  of	
  
its	
  shape.	
  	
  

¢  Can	
  be	
  approximated	
  by	
  a	
  
(5	
  x	
  5)	
  mask	
  
l  Not	
  unique.	
  	
  
l  Capture	
  the	
  general	
  

shape	
  (positive	
  central	
  
term	
  surrounded	
  by	
  
negative	
  terms,	
  and	
  zeros	
  
at	
  the	
  outer	
  region)	
  

l  Coef<icients	
  must	
  sum	
  to	
  
zero	
  so	
  that	
  the	
  response	
  
is	
  zero	
  at	
  constant	
  
intensities.	
  	
  

l  Masks	
  of	
  arbitrary	
  size	
  
can	
  be	
  generated	
  by	
  
sampling	
  the	
  LOG	
  
function.	
  	
   )2 radius of circle a (define  02 :zeros
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Laplacian Edge Detection Example 
 

(a) Original 
image 
 
(b) sigma=2 
 
(c) sigma=1 
 
(d) sigma=3 

THE CANNY EDGE DETECTOR 319

(a) (b)

(c) (d)

Figure 14.11 Edge detection using the LoG edge detector: (a) input image; (b) results using default
values; (c) result using � = 1; (d) result using � = 3. Edge results have been inverted for clarity.

J = edge(I, ’canny’, T, sigma);
where I, is the input image, T = [T_low T_high] is a 1⇥2 vector containing the two

thresholds explained in step 4 of the algorithm, sigma is the standard deviation of the
Gaussian smoothing filter, and J is the output image.

EXAMPLE 14.5

Figure 14.12 shows the results of applying the Canny detector to an image (Fig-
ure 14.5(a)), and the impact of varying � and the thresholds. Part (a) uses the syntax
BW = edge(J,’canny’);, which results in t = [0.0625 0.1563] and � = 1. In
part (b), we change the value of � (to 0.5) leaving everything else unchanged. In part
(c), we change the value of � (to 2) leaving everything else unchanged. Changing
� causes the resulting image to contain more (part(b)) or fewer (part(c)) edge points
(compared to part (a)), as expected. Finally, in part (d), we keep � in its default value
and change the thresholds to t = [0.01 0.1]. Since both Tlow and Thigh were
lowered, the resulting image contains more strong and weak pixels, resulting in a
larger number of edge pixels (compared to part (a)), as expected.
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39 

Canny Edge 
Detector 

Quality of an Edge 
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Canny Edge Detector 

Canny Edge Detector Steps 
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Canny Edge Detector First 
Two Steps 

Canny Edge Detector 
Derivative of Gaussian 
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Canny Edge Detector:  
Steps 1 & 2 

Canny Edge Detector: 
Step 3 
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Canny Edge Detector: 
Step 4 

Canny Edge Detector 
Non-maximum Supression 
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Canny Edge Detector 
Nonmaxima Supression 

¢  Canny does edge thinning by nonmaxima 
suppression: 
l  Classify gradient angle into one of 4 

sectors: 
•  0: -22.5 to 22.5, 180-22.5 to 180+22.5 
•  1: 22.5 to 67.5, 180+22.5 to 180+67.5 
•  2: 67.5 to 112.5, 180+67.5 to 180+112.5 
•  3: 112.5 to 157.5, 180+112.5 to 180+157.5 

l  Compare center with the 2 neighbors, 
set to 0 if not greater than both 

Sector 0 Sector 1 Sector 2 Sector 3 

Canny Edge Detector 
Nonmaxima Supression 
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Canny Edge Detector 
Hysteresis Thresholding 
l  Check that maximum value of gradient is 

sufficiently large 
−  Hysteresis Thresholding 

•  Use a “High” threshold to start edge curves and a 
“Low” threshold to continue them. 

Canny Edge Detector 
Hysteresis Thresholding 
¢ Double Thresholding 

edge 
starts 
after 
passing 
Thigh 

edge 
ends 
when 
gradient 
falls 
below 
Tlow 
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Hysteresis Thresholding 

Canny Edge Detector 
Hysteresis Thresholding 
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The	
  Canny	
  Edge	
  Detector	
  
1.  Compute	
  smoothed	
  gradient	
  (intensity	
  and	
  

direction)	
  for	
  each	
  point	
  in	
  the	
  image.	
  
2.  Thin	
  edges,	
  leaving	
  only	
  the	
  pixels	
  at	
  the	
  top	
  of	
  

each	
  ridge	
  (non-­‐maximal	
  suppression).	
  	
  
3.  Threshold	
  ridge	
  pixels	
  using	
  two	
  thresholds,	
  Tlow	
  

and	
  Thigh	
  (hysteresis	
  thresholding).	
  
1.  Ridge	
  pixels	
  with	
  value	
  greater	
  than	
  Thigh	
  	
  are	
  

considered	
  strong	
  edge	
  pixels	
  
2.  Ridge	
  pixels	
  with	
  values	
  between	
  Tlow	
  and	
  Thigh	
  

are	
  said	
  to	
  be	
  weak	
  edge	
  pixels	
  
4.  Perform	
  edge	
  linking,	
  aggregating	
  weak	
  pixels	
  

that	
  are	
  8-­‐connected	
  to	
  the	
  strong	
  pixels.	
  
	
  
In	
  MATLAB:	
  J = edge(I, 'canny', T, sigma);  
% T contains two thresholds 

Canny Edge Detector 

Noisy original Canny Sobel 
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57 

Line 
Identification 

Edge	
  Iden.fica.on	
  

¢  Due	
  to	
  many	
  technical	
  challenges	
  (noise,	
  
shadows,	
  occlusion,	
  etc,),	
  most	
  edge	
  detection	
  
algorithms	
  will	
  output	
  an	
  image	
  containing	
  
fragmented	
  edges.	
  	
  

¢  Additional	
  processing	
  is	
  needed	
  to	
  turn	
  
fragmented	
  edge	
  segments	
  into	
  useful	
  lines	
  
and	
  object	
  boundaries.	
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The	
  Hough	
  Transform	
  

¢ A	
  mathematical	
  method	
  designed	
  to	
  
<ind	
  lines	
  in	
  images.	
  	
  

¢  It	
  can	
  be	
  used	
  for	
  linking	
  the	
  results	
  of	
  
edge	
  detection,	
  turning	
  potentially	
  
sparse,	
  broken,	
  or	
  isolated	
  edges	
  into	
  
useful	
  lines	
  that	
  correspond	
  to	
  the	
  
actual	
  edges	
  in	
  the	
  image.	
  

The	
  Hough	
  transform	
  
¢  Let	
  (x,y)	
  be	
  the	
  coordinates	
  of	
  a	
  point	
  in	
  a	
  binary	
  image	
  (containing	
  

thresholded	
  edge	
  detection	
  results).	
  
¢  The	
  Hough	
  transform	
  stores	
  in	
  an	
  accumulator	
  array	
  all	
  pairs	
  (a,b)	
  that	
  

satisfy	
  the	
  equation	
  y	
  =	
  ax+	
  b.	
  The	
  (a,b)	
  array	
  is	
  called	
  the	
  transform	
  array.	
  	
  
l  Example:,	
  the	
  point	
  (x,y)	
  =	
  (1,3)	
  in	
  the	
  input	
  image	
  will	
  result	
  in	
  the	
  equation	
  	
  

b	
  =	
  -­‐a	
  +	
  3,	
  which	
  can	
  be	
  plotted	
  as	
  a	
  line	
  that	
  represents	
  all	
  pairs	
  (a,b)	
  that	
  
satisfy	
  this	
  equation.	
  

EDGE LINKING AND BOUNDARY DETECTION 321

array is called the transform array. For example, the point (x, y) = (1, 3) in the input
image will result in the equation b = �a+3, which can be plotted as a line that represents
all pairs (a, b) that satisfy this equation (Figure 14.13).

Figure 14.13 The Hough transform maps a point into a line.

Since each point in the image will map to a line in the transform domain, repeating the
process for other points will result in many intersecting lines, one per point (Figure 14.14).
The meaning of two or more lines intersecting in the transform domain is that the points
to which they correspond are aligned in the image. The points with the greatest number of
intersections in the transform domain correspond to the longest lines in the image.

Figure 14.14 The Hough transform: intersections in the transform domain correspond to aligned
points in the image.

Describing lines using the equation y = ax + b (where a represents the gradient)
poses a problem, though, since vertical lines have infinite gradient. This limitation can
be circumvented by using the normal representation of a line, which consists of two
parameters: ⇢ (the perpendicular distance from the line to the origin), and ✓ (the angle
between the line’s perpendicular and the horizontal axis). In this new representation
(Figure 14.15), vertical lines will have ✓ = 0. It is common to allow ⇢ to have negative
values, therefore restricting ✓ to the range �90

� < ✓  90

�.
The relationship between ⇢, ✓, and the original coordinates (x, y) is:

⇢ = x cos ✓ + y sin ✓ (14.13)



28/11/13 

31 

The	
  Hough	
  Transform	
  
¢  Since	
  each	
  point	
  in	
  the	
  image	
  will	
  map	
  to	
  a	
  line	
  in	
  the	
  transform	
  domain,	
  

repeating	
  the	
  process	
  for	
  other	
  points	
  will	
  result	
  in	
  many	
  intersecting	
  
lines,	
  one	
  per	
  point.	
  	
  

¢  The	
  meaning	
  of	
  two	
  or	
  more	
  lines	
  intersecting	
  in	
  the	
  transform	
  domain	
  
is	
  that	
  the	
  points	
  to	
  which	
  they	
  correspond	
  are	
  aligned	
  in	
  the	
  image.	
  	
  

¢  The	
  points	
  with	
  the	
  greatest	
  number	
  of	
  intersections	
  in	
  the	
  transform	
  
domain	
  correspond	
  to	
  the	
  longest	
  lines	
  in	
  the	
  image.	
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array is called the transform array. For example, the point (x, y) = (1, 3) in the input
image will result in the equation b = �a+3, which can be plotted as a line that represents
all pairs (a, b) that satisfy this equation (Figure 14.13).

Figure 14.13 The Hough transform maps a point into a line.

Since each point in the image will map to a line in the transform domain, repeating the
process for other points will result in many intersecting lines, one per point (Figure 14.14).
The meaning of two or more lines intersecting in the transform domain is that the points
to which they correspond are aligned in the image. The points with the greatest number of
intersections in the transform domain correspond to the longest lines in the image.

Figure 14.14 The Hough transform: intersections in the transform domain correspond to aligned
points in the image.

Describing lines using the equation y = ax + b (where a represents the gradient)
poses a problem, though, since vertical lines have infinite gradient. This limitation can
be circumvented by using the normal representation of a line, which consists of two
parameters: ⇢ (the perpendicular distance from the line to the origin), and ✓ (the angle
between the line’s perpendicular and the horizontal axis). In this new representation
(Figure 14.15), vertical lines will have ✓ = 0. It is common to allow ⇢ to have negative
values, therefore restricting ✓ to the range �90

� < ✓  90

�.
The relationship between ⇢, ✓, and the original coordinates (x, y) is:

⇢ = x cos ✓ + y sin ✓ (14.13)

a=0, b=1 

a=1, b=-1 

The	
  Hough	
  Transform	
  

¢  Describing	
  lines	
  using	
  the	
  equation	
  y	
  =	
  ax	
  +	
  b	
  (where	
  a	
  
represents	
  the	
  gradient)	
  poses	
  a	
  problem,	
  though,	
  since	
  
vertical	
  lines	
  have	
  in<inite	
  gradient.	
  	
  

¢  This	
  limitation	
  can	
  be	
  circumvented	
  by	
  using	
  the	
  normal	
  
representation	
  of	
  a	
  line,	
  which	
  consists	
  of	
  two	
  parameters:	
  
ρ	
  and	
  θ.	
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Figure 14.15 The Hough transform: a line and its parameters in the polar coordinate system.

Under the new set of coordinates, the Hough transform can be implemented as follows:

1. Create a 2D array corresponding to a discrete set of values for ⇢ and ✓. Each element
in this array is often referred to as an accumulator cell.

2. For each pixel (x, y) in the image and for each chosen value of ✓, compute x cos ✓+
y sin ✓ and write the result in the corresponding position – (⇢, ✓) – in the accumulator
array.

3. The highest values in the (⇢, ✓) array will correspond to the most relevant lines in the
image.

In MATLAB

The IPT contains a function for Hough transform calculations, hough, which takes a binary
image as an input parameter, and returns the corresponding Hough transform matrix and
the arrays of ⇢ and ✓ values over which the Hough transform was calculated. Optionally,
the resolution of the discretized 2D array for both ⇢ and ✓ can be specified as additional
parameters.

EXAMPLE 14.6

In this example we use the hough function to find the strongest lines in a binary
image obtained as a result of an edge detection operator (BW), using the following
steps:

[H,T,R] = hough(BW,’RhoResolution’,0.5,’ThetaResolution’,0.5);

Figure 14.16 shows the original image and the results of the Hough transform
calculations. You will notice that some of the highest peaks in the transform image
(approximately at ✓ = �60

� and ✓ = 60

�) correspond do the main diagonal lines in
the scissors shape.

In MATLAB

The IPT also includes two useful companion functions for exploring and plotting the results
of Hough Transform calculations: houghpeaks (which identifies the k most salient peaks
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array is called the transform array. For example, the point (x, y) = (1, 3) in the input
image will result in the equation b = �a+3, which can be plotted as a line that represents
all pairs (a, b) that satisfy this equation (Figure 14.13).

Figure 14.13 The Hough transform maps a point into a line.

Since each point in the image will map to a line in the transform domain, repeating the
process for other points will result in many intersecting lines, one per point (Figure 14.14).
The meaning of two or more lines intersecting in the transform domain is that the points
to which they correspond are aligned in the image. The points with the greatest number of
intersections in the transform domain correspond to the longest lines in the image.

Figure 14.14 The Hough transform: intersections in the transform domain correspond to aligned
points in the image.

Describing lines using the equation y = ax + b (where a represents the gradient)
poses a problem, though, since vertical lines have infinite gradient. This limitation can
be circumvented by using the normal representation of a line, which consists of two
parameters: ⇢ (the perpendicular distance from the line to the origin), and ✓ (the angle
between the line’s perpendicular and the horizontal axis). In this new representation
(Figure 14.15), vertical lines will have ✓ = 0. It is common to allow ⇢ to have negative
values, therefore restricting ✓ to the range �90

� < ✓  90

�.
The relationship between ⇢, ✓, and the original coordinates (x, y) is:

⇢ = x cos ✓ + y sin ✓ (14.13)
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Hough Transform 
Example 

Example:	
  Hough	
  Transform	
  

B 

A 

C 

D 

C 
D 

A B 



28/11/13 

33 

The	
  Hough	
  Transform	
  Algorithm	
  

1.  Create	
  a	
  2D	
  array	
  corresponding	
  to	
  a	
  discrete	
  set	
  of	
  
values	
  for	
  ρ	
  and	
  θ.	
  Each	
  element	
  in	
  this	
  array	
  is	
  
referred	
  to	
  as	
  an	
  accumulator	
  cell.	
  	
  
1.  Increments	
  too	
  big:	
  May	
  not	
  distinguish	
  different	
  lines	
  
2.  Increments	
  oo	
  small:	
  Noise	
  may	
  cause	
  lines	
  to	
  be	
  missed	
  

2.  For	
  each	
  pixel	
  (x,y)	
  in	
  the	
  image	
  and	
  for	
  each	
  chosen	
  
value	
  of	
  θ,	
  compute	
  x	
  cos	
  θ	
  +	
  y	
  sin	
  θ	
  and	
  write	
  the	
  
result	
  in	
  the	
  corresponding	
  position	
  (ρ,	
  θ)	
  in	
  the	
  
accumulator	
  array.	
  	
  

3.  The	
  highest	
  values	
  in	
  the	
  (ρ,	
  θ)	
  array	
  will	
  
correspond	
  to	
  the	
  most	
  relevant	
  lines	
  in	
  the	
  image.	
  	
  

Line FittingHough Transform  
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Noise vs. Increments 

•  ρ	
  and	
  θ	
  increments	
  too	
  
big:	
  May	
  not	
  distinguish	
  
different	
  lines	
  

•  ρ	
  and	
  θ	
  increments	
  too	
  
small:	
  Noise	
  may	
  cause	
  
lines	
  to	
  be	
  missed	
  

Project 1.8 
Edge Detection 
Due 08.12.2013 
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Problem 1.8 

1.  Select an image with a dominant edge in it. Display it. 
2.  Obtain gradient magnitude of its luminance channel. Use 

Sobel operator for calculating the derivatives. Display the 
horizontal and vertical gradient images. 

3.  Apply a threshold to the gradient magnitude image to 
detect edge pixels. Display the gradient magnitude image 
and its thresholded version. Pick an appropriate threshold 
using trial and error. 

4.  Use Hough transform to identify the parameters of the 
dominant edge. Display the Hough transformed image. 

5.  Comment on the performance of the above algorithm on 
finding the dominant edge in the image. 
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Next Lecture 

IMAGE SEGMENTATION 


