
28/11/13

1

1

EE421/521
Image Processing
Lecture 8
CORNER DETECTION
EDGE DETECTION
LINE IDENTIFICATION

¢ Today
l Edge Detection
l Segmentation

¢ Next Tuesday 14:40-16:30
l More topics on edge detection and

segmentstion
l Classroom will be announced later

¢ Next Thursday
l Midterm 2 2

28/11/13

2

Edge Detection Applications

¢  Image alignment
¢ Object tracking
¢ Boundary identification
¢ Region segmentation

3

4

Corner
Detection

28/11/13

3

Corners, Edges, Smooth Areas

Corners

“flat” region:
no change in all
directions

“edge”:
no change along
the edge direction

“corner”:
significant change
in all directions

28/11/13

4

Autocorrelation:
Indicator of Corners

∑
∈

++=
Wyx

yxIvyuxIvuR
),(

),(),(),(

Autocorrelation Calculation

Autocorrelation can be approximated by
sum-squared-difference (SSD):

∑
∈

++=
Wyx

yxIvyuxIvuR
),(

),(),(),(

28/11/13

5

SSD Calculation

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

∑∑
∑∑

W
y

W
yx

W
yx

W
x

III

III
A 2

2

AuuvuE T=),(

Let

then

⎥
⎦

⎤
⎢
⎣

⎡
=
v
u

uand

Use Sobel Operator for
Gradient Computation

Gaussian derivative of Gaussian

-1 0 1

-2 0 2
-1 0 1

1 2 1

0 0 0
-1 -2 -1

Horizontal derivative Vertical derivative

28/11/13

6

Eigenvalues and Eigenvectors
of the Auto-correlation Matrix

+− ≤=≤ λλ AuuvuE T),(

where and are the two eigenvalues of . −λ+λ A

lower limit upper limit

The eigenvector corresponding to
gives the direction of largest increase E,

while the eigenvector corresponding to
gives the direction of smallest increase in E.

+λ

−λ

+e

−e

λ+ for Edges, λ- for Corners

28/11/13

7

Corner Detection Algorithm
•  Compute the gradient at each point in the image
•  Create the A matrix for each point from the gradients in a window
•  Compute the eigenvalues of each A
•  Find points with large response (λ- > threshold)
•  Choose those points as features where λ- is a local maximum

The Harris Operator

•  Called the “Harris Corner Detector” or “Harris Operator”
•  Very similar to λ- but less expensive (no square root)

2211

21122211

)(tr
)det(

aa
aaaa

A
Af

+
−

==
+

=
+−

+−

λλ
λλ

⎥
⎦

⎤
⎢
⎣

⎡
=

2221

1211

aa
aa

A

28/11/13

8

The Harris Operator

Harris
operator

Harris Detector Example

28/11/13

9

Threshold (f > value)

Find Local Maxima of f

28/11/13

10

Harris Features (in red)

20

Edge
Detection

Slides mostly from Oge Marques, Copyright © 2011 by John Wiley & Sons, Inc..

28/11/13

11

What	
 is	
 Edge	
 Detec.on?	

¢  There	
 is	
 compelling	
 evidence	
 that	
 the	
 very	

early	
 stages	
 of	
 the	
 human	
 visual	
 system	

(HVS)	
 contain	
 edge-­‐sensitive	
 cells	
 	

¢ Goal	
 of	
 edge	
 detection	
 algorithms	
 is	
 to	
 <ind	

the	
 most	
 relevant	
 edges	
 in	
 an	
 image.	
 	

¢  These	
 edges	
 could	
 then	
 be	
 connected	
 into	

meaningful	
 lines	
 and	
 boundaries,	
 resulting	

in	
 a	
 segmented	
 	
 image	
 containing	
 two	
 or	

more	
 regions.	
 	

Basic	
 Concepts	

¢  Edge:	
 a	
 boundary	
 between	
 two	
 image	
 regions	
 having	

distinct	
 characteristics	
 according	
 to	
 some	
 feature	
 (e.g.,	
 gray	

level,	
 color,	
 or	
 texture).	
 	

¢  In	
 grayscale	
 2D	
 images:	
 a	
 sharp	
 variation	
 of	
 the	
 intensity	

function	
 across	
 a	
 portion	
 of	
 the	
 image.	
 	

28/11/13

12

Image	
 Deriva.ves	
 and	
 Edges	

¢  The	
 magnitude	
 of	
 the	
 .irst	
 derivative	
 can	

be	
 used	
 to	
 detect	
 the	
 presence	
 of	
 an	
 edge	
 at	

a	
 certain	
 point	
 in	
 the	
 image.	
 	

¢  The	
 sign	
 of	
 second	
 derivative	
 can	
 be	
 used	

to	
 determine	
 whether	
 a	
 pixel	
 lies	
 on	
 the	

dark	
 or	
 bright	
 side	
 of	
 an	
 edge.	
 	

l Moreover,	
 the	
 zero	
 crossing	
 between	
 the	

positive	
 and	
 negative	
 peaks	
 of	
 the	
 second	

derivative	
 can	
 be	
 used	
 to	
 locate	
 the	
 center	

of	
 thick	
 edges.	

Ramp	
 Edge	

¢  The	
 .irst	
 	
 derivative	
 has	
 a	

peak	
 at	
 the	
 	
 center	
 of	
 the	

luminance	
 edge.	
 	

¢  The	
 second	
 derivative	

has	
 two	
 peaks,	
 with	
 a	

positive	
 value	
 on	
 the	
 left	

and	
 	
 a	
 negative	
 value	
 on	

the	
 right.	

28/11/13

13

The	
 Influence	
 of	
 Noise	

	

(a),(b),(c)	
 	

Original	
 image,	

<irst	
 derivative,	

second	
 derivative	
 	

(d),	
 (e),	
 (f)	

Horizontal	

pro<iles	
 	

	

(g),	
 (h),	
 (i)	

Noisy	
 versions	
 of	

images	
 	

(j),	
 (k),	
 	
 (l)	

Horizontal	

pro<iles	

	

FIRST-ORDER DERIVATIVE EDGE DETECTION 311

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 14.3 First and second order edge detectors with and without noise: (a) original image;
(b) first derivative; (c) second derivative; (d)-(f): horizontal profiles for images (a)-(c); (g)-(i) noisy
versions of images (a)-(c); (j)-(l): horizontal profiles for images (g)-(i).

These gradients are often computed within a 3⇥3 neighborhood using convolution:

gx(x, y) = hx ⇤ f(x, y) (14.5)

gy(x, y) = hy ⇤ f(x, y) (14.6)

where hx and hy are appropriate convolutions masks (kernels).
The simplest pair of kernels, known as the Prewitt [Pre70] edge detector (operator), are:

hx =

2

4

�1 0 1

�1 0 1

�1 0 1

3

5 (14.7)

hy =

2

4

�1 �1 �1

0 0 0

1 1 1

3

5 (14.8)

A similar pair of kernels, which gives more emphasis to on-axis pixels, is the Sobel edge
detector, given by:

Even modest levels of noise can make the second order derivative useless.

2D Edge Detection Filters

Laplacian operator:

Laplacian of Gaussian

Gaussian for Smoothing Derivative of Gaussian

look for peaks look for zero-
crossings

28/11/13

14

Prewit and Sobel Edge
Detectors
¢  Compute derivatives in x and y directions
¢  Find gradient magnitude
¢  Threshold gradient magnitude

Sobel Edge Detector

28/11/13

15

Sobel Edge Detector

Sobel Edge Detector

28/11/13

16

Effect of Smoothing (Noise
Suppression)

Effect	
 of	
 Threshold	

¢  (a)	
 threshold	
 of	
 zero,	
 too	

many	
 spurious	
 pixels	

¢  (b)	
 threshold	
 of	
 0.05	
 	

¢  (c)	
 threshold	
 of	
 0.1	

¢  (d)	
 threshold	
 of	
 0.2	
 	

SECOND-ORDER DERIVATIVE EDGE DETECTION 315

Figure 14.7 Robinson compass masks.

(a) (b)

(c) (d)

Figure 14.8 Edge detection using Sobel operator and thresholding (the original image is the same
as Figure 14.5(a)): (a) Threshold of 0; (b) Threshold of 0.05; (c) Threshold of 0.1138 (the best value);
(d) Threshold of 0.2.

In MATLAB

Edge detection using the Laplacian operator can be implemented using the fspecial
function (to generate the Laplacian 3⇥3 convolution mask) and the zerocross option in
function edge as follows:

314 EDGE DETECTION

(a) (b)

(c) (d)

Figure 14.5 Edge detection using Sobel operator: (a) original image; (b) result of Sobel horizontal
kernel; (c) result of Sobel vertical kernel; (d) combination of (b) and (c).

Figure 14.6 Kirsch compass masks.

for being employed as an isotropic (i.e., omnidirectional) edge detector, it is rarely used in
isolation because of two limitations (commented earlier in this chapter):

• it generates “double edges”, i.e., positive and negative values for each edge;

• it is extremely sensitive to noise.

28/11/13

17

Zero Crossings of the
Second Order Derivative

Laplacian Based Edge
Detection

28/11/13

18

Laplacian of Gaussian
¢  Laplacian	
 is	
 rarely	
 used	
 in	
 isolation	
 because	
 it	
 is	

extremely	
 sensitive	
 to	
 noise.	

¢  Laplacian	
 of	
 Gaussian	
 (LoG)	
 works	
 by	
 smoothing	
 the	

image	
 with	
 a	
 Gaussian	
 low-­‐pass	
 <ilter,	
 and	
 then	
 applying	

a	
 Laplacian	
 to	
 the	
 result.	
 	

¢  Edge	
 detection	
 is	
 achieved	
 by	
 LoG	
 followed	
 by	
 zero-­‐
crossing	
 detection	
 318 EDGE DETECTION

(a) (b)

(c) (d)

Figure 14.10 Laplacian of Gaussian (LoG): (a) 3D plot; (b) 2D intensity plot; (c) cross section of
(a).

2. The local gradient (intensity and direction) is computed for each point in the smoothed
image.

3. The edge points at the output of step 2 result in wide ridges. The algorithm thins
those ridges, leaving only the pixels at the top of each ridge, in a process known as
non-maximal suppression.

4. The ridge pixels are then thresholded using two thresholds, Tlow and Thigh: ridge
pixels with value greater than Thigh are considered strong edge pixels; ridge pixels
with values between Tlow and Thigh are said to be weak pixels. This process is
known as hysteresis thresholding.

5. The algorithm performs edge linking, aggregating weak pixels that are 8-connected2

to the strong pixels.

In MATLAB

The edge function includes the Canny edge detector, which can be invoked using the
following syntax:

2In some implementations, only the neighbors along a line normal to the gradient orientation at the edge pixel are
considered, not the entire 8-neighborhood.

Laplacian	
 of	
 Gaussian	

¢  Second	
 derivative	
 of	
 the	
 Gaussian	

function	

¢  Gaussian	
 part	
 smooths	
 the	
 image:	
 	

l  Reduces	
 noise	

l  Reduces	
 image	
 structures	
 at	

scales	
 much	
 smaller	
 than	
 sigma.	
 	

l  Gaussian	
 is	
 smooth	
 in	
 both	
 spatial	

and	
 frequency	
 domains	
 and	
 does	

not	
 have	
 ringing	
 artifact.	
 	

¢  Laplacian	
 part:	

l  Isotropic	
 operator	
 (invariant	
 to	

rotation)	

l  Corresponds	
 to	
 characteristics	
 of	

human	
 visual	
 system	

l  Responds	
 equally	
 to	
 changes	
 in	

intensity	
 in	
 any	
 mask	
 direction	
 	

l  No	
 need	
 to	
 use	
 multiple	
 masks	

G2∇

e

ee

ee

e

yx

yxyx

yxyx

yx

yxyxG

yx

y
y

x
x

y
yxG

x
yxGyxG

yxG

2

22

2

22

2

22

2

22

2

22

2

22

2
4

222
2

2
24

2
2

24

2

2
2

2
2

2

2

2

2
2

2

2),(

11

),(),(),(

),(

σ

σσ

σσ

σ

σ
σ

σσσσ

σσ

+
−

+
−

+
−

+
−

+
−

+
−

⎥
⎦

⎤
⎢
⎣

⎡ −+
=∇

⎥
⎦

⎤
⎢
⎣

⎡
−+⎥

⎦

⎤
⎢
⎣

⎡
−=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −

∂

∂
+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −

∂

∂
=

∂

∂
+

∂

∂
=∇

=

Gaussian Laplacian LoG
is equivalent to

28/11/13

19

Laplacian	
 of	
 Gaussian	

¢  Negative	
 of	
 the	
 LoG	

¢  Zeros	
 de<ine	
 a	
 circle	

centered	
 at	
 origin.	
 	

¢  Also	
 called	
 as	
 the	
 Mexican	

Hat	
 operator	
 because	
 of	

its	
 shape.	
 	

¢  Can	
 be	
 approximated	
 by	
 a	

(5	
 x	
 5)	
 mask	

l  Not	
 unique.	
 	

l  Capture	
 the	
 general	

shape	
 (positive	
 central	

term	
 surrounded	
 by	

negative	
 terms,	
 and	
 zeros	

at	
 the	
 outer	
 region)	

l  Coef<icients	
 must	
 sum	
 to	

zero	
 so	
 that	
 the	
 response	

is	
 zero	
 at	
 constant	

intensities.	
 	

l  Masks	
 of	
 arbitrary	
 size	

can	
 be	
 generated	
 by	

sampling	
 the	
 LOG	

function.	
 	
)2 radius of circle a (define 02 :zeros

2),(

222

2
4

222
2 2

22

σσ

σ
σ

σ

=−+

⎥
⎦

⎤
⎢
⎣

⎡ −+
=∇

+
−

yx

yxyxG e
yx

Laplacian Edge Detection Example

(a) Original
image

(b) sigma=2

(c) sigma=1

(d) sigma=3

THE CANNY EDGE DETECTOR 319

(a) (b)

(c) (d)

Figure 14.11 Edge detection using the LoG edge detector: (a) input image; (b) results using default
values; (c) result using � = 1; (d) result using � = 3. Edge results have been inverted for clarity.

J = edge(I, ’canny’, T, sigma);
where I, is the input image, T = [T_low T_high] is a 1⇥2 vector containing the two

thresholds explained in step 4 of the algorithm, sigma is the standard deviation of the
Gaussian smoothing filter, and J is the output image.

EXAMPLE 14.5

Figure 14.12 shows the results of applying the Canny detector to an image (Fig-
ure 14.5(a)), and the impact of varying � and the thresholds. Part (a) uses the syntax
BW = edge(J,’canny’);, which results in t = [0.0625 0.1563] and � = 1. In
part (b), we change the value of � (to 0.5) leaving everything else unchanged. In part
(c), we change the value of � (to 2) leaving everything else unchanged. Changing
� causes the resulting image to contain more (part(b)) or fewer (part(c)) edge points
(compared to part (a)), as expected. Finally, in part (d), we keep � in its default value
and change the thresholds to t = [0.01 0.1]. Since both Tlow and Thigh were
lowered, the resulting image contains more strong and weak pixels, resulting in a
larger number of edge pixels (compared to part (a)), as expected.

28/11/13

20

39

Canny Edge
Detector

Quality of an Edge

28/11/13

21

Canny Edge Detector

Canny Edge Detector Steps

28/11/13

22

Canny Edge Detector First
Two Steps

Canny Edge Detector
Derivative of Gaussian

28/11/13

23

Canny Edge Detector:
Steps 1 & 2

Canny Edge Detector:
Step 3

28/11/13

24

Canny Edge Detector:
Step 4

Canny Edge Detector
Non-maximum Supression

28/11/13

25

Canny Edge Detector
Nonmaxima Supression

¢  Canny does edge thinning by nonmaxima
suppression:
l  Classify gradient angle into one of 4

sectors:
•  0: -22.5 to 22.5, 180-22.5 to 180+22.5
•  1: 22.5 to 67.5, 180+22.5 to 180+67.5
•  2: 67.5 to 112.5, 180+67.5 to 180+112.5
•  3: 112.5 to 157.5, 180+112.5 to 180+157.5

l  Compare center with the 2 neighbors,
set to 0 if not greater than both

Sector 0 Sector 1 Sector 2 Sector 3

Canny Edge Detector
Nonmaxima Supression

28/11/13

26

Canny Edge Detector
Hysteresis Thresholding
l  Check that maximum value of gradient is

sufficiently large
−  Hysteresis Thresholding

•  Use a “High” threshold to start edge curves and a
“Low” threshold to continue them.

Canny Edge Detector
Hysteresis Thresholding
¢ Double Thresholding

edge
starts
after
passing
Thigh

edge
ends
when
gradient
falls
below
Tlow

28/11/13

27

Hysteresis Thresholding

Canny Edge Detector
Hysteresis Thresholding

28/11/13

28

The	
 Canny	
 Edge	
 Detector	

1.  Compute	
 smoothed	
 gradient	
 (intensity	
 and	

direction)	
 for	
 each	
 point	
 in	
 the	
 image.	

2.  Thin	
 edges,	
 leaving	
 only	
 the	
 pixels	
 at	
 the	
 top	
 of	

each	
 ridge	
 (non-­‐maximal	
 suppression).	
 	

3.  Threshold	
 ridge	
 pixels	
 using	
 two	
 thresholds,	
 Tlow	

and	
 Thigh	
 (hysteresis	
 thresholding).	

1.  Ridge	
 pixels	
 with	
 value	
 greater	
 than	
 Thigh	
 	
 are	

considered	
 strong	
 edge	
 pixels	

2.  Ridge	
 pixels	
 with	
 values	
 between	
 Tlow	
 and	
 Thigh	

are	
 said	
 to	
 be	
 weak	
 edge	
 pixels	

4.  Perform	
 edge	
 linking,	
 aggregating	
 weak	
 pixels	

that	
 are	
 8-­‐connected	
 to	
 the	
 strong	
 pixels.	

	

In	
 MATLAB:	
 J = edge(I, 'canny', T, sigma);
% T contains two thresholds

Canny Edge Detector

Noisy original Canny Sobel

28/11/13

29

57

Line
Identification

Edge	
 Iden.fica.on	

¢  Due	
 to	
 many	
 technical	
 challenges	
 (noise,	

shadows,	
 occlusion,	
 etc,),	
 most	
 edge	
 detection	

algorithms	
 will	
 output	
 an	
 image	
 containing	

fragmented	
 edges.	
 	

¢  Additional	
 processing	
 is	
 needed	
 to	
 turn	

fragmented	
 edge	
 segments	
 into	
 useful	
 lines	

and	
 object	
 boundaries.	
 	

28/11/13

30

The	
 Hough	
 Transform	

¢ A	
 mathematical	
 method	
 designed	
 to	

<ind	
 lines	
 in	
 images.	
 	

¢  It	
 can	
 be	
 used	
 for	
 linking	
 the	
 results	
 of	

edge	
 detection,	
 turning	
 potentially	

sparse,	
 broken,	
 or	
 isolated	
 edges	
 into	

useful	
 lines	
 that	
 correspond	
 to	
 the	

actual	
 edges	
 in	
 the	
 image.	

The	
 Hough	
 transform	

¢  Let	
 (x,y)	
 be	
 the	
 coordinates	
 of	
 a	
 point	
 in	
 a	
 binary	
 image	
 (containing	

thresholded	
 edge	
 detection	
 results).	

¢  The	
 Hough	
 transform	
 stores	
 in	
 an	
 accumulator	
 array	
 all	
 pairs	
 (a,b)	
 that	

satisfy	
 the	
 equation	
 y	
 =	
 ax+	
 b.	
 The	
 (a,b)	
 array	
 is	
 called	
 the	
 transform	
 array.	
 	

l  Example:,	
 the	
 point	
 (x,y)	
 =	
 (1,3)	
 in	
 the	
 input	
 image	
 will	
 result	
 in	
 the	
 equation	
 	

b	
 =	
 -­‐a	
 +	
 3,	
 which	
 can	
 be	
 plotted	
 as	
 a	
 line	
 that	
 represents	
 all	
 pairs	
 (a,b)	
 that	

satisfy	
 this	
 equation.	

EDGE LINKING AND BOUNDARY DETECTION 321

array is called the transform array. For example, the point (x, y) = (1, 3) in the input
image will result in the equation b = �a+3, which can be plotted as a line that represents
all pairs (a, b) that satisfy this equation (Figure 14.13).

Figure 14.13 The Hough transform maps a point into a line.

Since each point in the image will map to a line in the transform domain, repeating the
process for other points will result in many intersecting lines, one per point (Figure 14.14).
The meaning of two or more lines intersecting in the transform domain is that the points
to which they correspond are aligned in the image. The points with the greatest number of
intersections in the transform domain correspond to the longest lines in the image.

Figure 14.14 The Hough transform: intersections in the transform domain correspond to aligned
points in the image.

Describing lines using the equation y = ax + b (where a represents the gradient)
poses a problem, though, since vertical lines have infinite gradient. This limitation can
be circumvented by using the normal representation of a line, which consists of two
parameters: ⇢ (the perpendicular distance from the line to the origin), and ✓ (the angle
between the line’s perpendicular and the horizontal axis). In this new representation
(Figure 14.15), vertical lines will have ✓ = 0. It is common to allow ⇢ to have negative
values, therefore restricting ✓ to the range �90

� < ✓  90

�.
The relationship between ⇢, ✓, and the original coordinates (x, y) is:

⇢ = x cos ✓ + y sin ✓ (14.13)

28/11/13

31

The	
 Hough	
 Transform	

¢  Since	
 each	
 point	
 in	
 the	
 image	
 will	
 map	
 to	
 a	
 line	
 in	
 the	
 transform	
 domain,	

repeating	
 the	
 process	
 for	
 other	
 points	
 will	
 result	
 in	
 many	
 intersecting	

lines,	
 one	
 per	
 point.	
 	

¢  The	
 meaning	
 of	
 two	
 or	
 more	
 lines	
 intersecting	
 in	
 the	
 transform	
 domain	

is	
 that	
 the	
 points	
 to	
 which	
 they	
 correspond	
 are	
 aligned	
 in	
 the	
 image.	
 	

¢  The	
 points	
 with	
 the	
 greatest	
 number	
 of	
 intersections	
 in	
 the	
 transform	

domain	
 correspond	
 to	
 the	
 longest	
 lines	
 in	
 the	
 image.	

EDGE LINKING AND BOUNDARY DETECTION 321

array is called the transform array. For example, the point (x, y) = (1, 3) in the input
image will result in the equation b = �a+3, which can be plotted as a line that represents
all pairs (a, b) that satisfy this equation (Figure 14.13).

Figure 14.13 The Hough transform maps a point into a line.

Since each point in the image will map to a line in the transform domain, repeating the
process for other points will result in many intersecting lines, one per point (Figure 14.14).
The meaning of two or more lines intersecting in the transform domain is that the points
to which they correspond are aligned in the image. The points with the greatest number of
intersections in the transform domain correspond to the longest lines in the image.

Figure 14.14 The Hough transform: intersections in the transform domain correspond to aligned
points in the image.

Describing lines using the equation y = ax + b (where a represents the gradient)
poses a problem, though, since vertical lines have infinite gradient. This limitation can
be circumvented by using the normal representation of a line, which consists of two
parameters: ⇢ (the perpendicular distance from the line to the origin), and ✓ (the angle
between the line’s perpendicular and the horizontal axis). In this new representation
(Figure 14.15), vertical lines will have ✓ = 0. It is common to allow ⇢ to have negative
values, therefore restricting ✓ to the range �90

� < ✓  90

�.
The relationship between ⇢, ✓, and the original coordinates (x, y) is:

⇢ = x cos ✓ + y sin ✓ (14.13)

a=0, b=1

a=1, b=-1

The	
 Hough	
 Transform	

¢  Describing	
 lines	
 using	
 the	
 equation	
 y	
 =	
 ax	
 +	
 b	
 (where	
 a	

represents	
 the	
 gradient)	
 poses	
 a	
 problem,	
 though,	
 since	

vertical	
 lines	
 have	
 in<inite	
 gradient.	
 	

¢  This	
 limitation	
 can	
 be	
 circumvented	
 by	
 using	
 the	
 normal	

representation	
 of	
 a	
 line,	
 which	
 consists	
 of	
 two	
 parameters:	

ρ	
 and	
 θ.	
 	

322 EDGE DETECTION

Figure 14.15 The Hough transform: a line and its parameters in the polar coordinate system.

Under the new set of coordinates, the Hough transform can be implemented as follows:

1. Create a 2D array corresponding to a discrete set of values for ⇢ and ✓. Each element
in this array is often referred to as an accumulator cell.

2. For each pixel (x, y) in the image and for each chosen value of ✓, compute x cos ✓+
y sin ✓ and write the result in the corresponding position – (⇢, ✓) – in the accumulator
array.

3. The highest values in the (⇢, ✓) array will correspond to the most relevant lines in the
image.

In MATLAB

The IPT contains a function for Hough transform calculations, hough, which takes a binary
image as an input parameter, and returns the corresponding Hough transform matrix and
the arrays of ⇢ and ✓ values over which the Hough transform was calculated. Optionally,
the resolution of the discretized 2D array for both ⇢ and ✓ can be specified as additional
parameters.

EXAMPLE 14.6

In this example we use the hough function to find the strongest lines in a binary
image obtained as a result of an edge detection operator (BW), using the following
steps:

[H,T,R] = hough(BW,’RhoResolution’,0.5,’ThetaResolution’,0.5);

Figure 14.16 shows the original image and the results of the Hough transform
calculations. You will notice that some of the highest peaks in the transform image
(approximately at ✓ = �60

� and ✓ = 60

�) correspond do the main diagonal lines in
the scissors shape.

In MATLAB

The IPT also includes two useful companion functions for exploring and plotting the results
of Hough Transform calculations: houghpeaks (which identifies the k most salient peaks

EDGE LINKING AND BOUNDARY DETECTION 321

array is called the transform array. For example, the point (x, y) = (1, 3) in the input
image will result in the equation b = �a+3, which can be plotted as a line that represents
all pairs (a, b) that satisfy this equation (Figure 14.13).

Figure 14.13 The Hough transform maps a point into a line.

Since each point in the image will map to a line in the transform domain, repeating the
process for other points will result in many intersecting lines, one per point (Figure 14.14).
The meaning of two or more lines intersecting in the transform domain is that the points
to which they correspond are aligned in the image. The points with the greatest number of
intersections in the transform domain correspond to the longest lines in the image.

Figure 14.14 The Hough transform: intersections in the transform domain correspond to aligned
points in the image.

Describing lines using the equation y = ax + b (where a represents the gradient)
poses a problem, though, since vertical lines have infinite gradient. This limitation can
be circumvented by using the normal representation of a line, which consists of two
parameters: ⇢ (the perpendicular distance from the line to the origin), and ✓ (the angle
between the line’s perpendicular and the horizontal axis). In this new representation
(Figure 14.15), vertical lines will have ✓ = 0. It is common to allow ⇢ to have negative
values, therefore restricting ✓ to the range �90

� < ✓  90

�.
The relationship between ⇢, ✓, and the original coordinates (x, y) is:

⇢ = x cos ✓ + y sin ✓ (14.13)

28/11/13

32

Hough Transform
Example

Example:	
 Hough	
 Transform	

B

A

C

D

C
D

A B

28/11/13

33

The	
 Hough	
 Transform	
 Algorithm	

1.  Create	
 a	
 2D	
 array	
 corresponding	
 to	
 a	
 discrete	
 set	
 of	

values	
 for	
 ρ	
 and	
 θ.	
 Each	
 element	
 in	
 this	
 array	
 is	

referred	
 to	
 as	
 an	
 accumulator	
 cell.	
 	

1.  Increments	
 too	
 big:	
 May	
 not	
 distinguish	
 different	
 lines	

2.  Increments	
 oo	
 small:	
 Noise	
 may	
 cause	
 lines	
 to	
 be	
 missed	

2.  For	
 each	
 pixel	
 (x,y)	
 in	
 the	
 image	
 and	
 for	
 each	
 chosen	

value	
 of	
 θ,	
 compute	
 x	
 cos	
 θ	
 +	
 y	
 sin	
 θ	
 and	
 write	
 the	

result	
 in	
 the	
 corresponding	
 position	
 (ρ,	
 θ)	
 in	
 the	

accumulator	
 array.	
 	

3.  The	
 highest	
 values	
 in	
 the	
 (ρ,	
 θ)	
 array	
 will	

correspond	
 to	
 the	
 most	
 relevant	
 lines	
 in	
 the	
 image.	
 	

Line FittingHough Transform

28/11/13

34

Noise vs. Increments

•  ρ	
 and	
 θ	
 increments	
 too	

big:	
 May	
 not	
 distinguish	

different	
 lines	

•  ρ	
 and	
 θ	
 increments	
 too	

small:	
 Noise	
 may	
 cause	

lines	
 to	
 be	
 missed	

Project 1.8
Edge Detection
Due 08.12.2013

68

28/11/13

35

Problem 1.8

1.  Select an image with a dominant edge in it. Display it.
2.  Obtain gradient magnitude of its luminance channel. Use

Sobel operator for calculating the derivatives. Display the
horizontal and vertical gradient images.

3.  Apply a threshold to the gradient magnitude image to
detect edge pixels. Display the gradient magnitude image
and its thresholded version. Pick an appropriate threshold
using trial and error.

4.  Use Hough transform to identify the parameters of the
dominant edge. Display the Hough transformed image.

5.  Comment on the performance of the above algorithm on
finding the dominant edge in the image.

69

Next Lecture

IMAGE SEGMENTATION

